Blackbody Radiation
Crc Press Inc (Verlag)
978-1-4822-6312-1 (ISBN)
In 1900 the great German theoretical physicist Max Planck formulated a correct mathematical description of blackbody radiation. Today, understanding the behavior of a blackbody is of importance to many fields including thermal and infrared systems engineering, pyrometry, astronomy, meteorology, and illumination. This book gives an account of the development of Planck’s equation together with many of the other functions closely related to it. Particular attention is paid to the computational aspects employed in the evaluation of these functions together with the various aids developed to facilitate such calculations.
The book is divided into three sections.
Section I – Thermal radiation and the blackbody problem are introduced and discussed. Early developments made by experimentalists and theoreticians are examined as they strove to understand the problem of the blackbody.
Section II – The development of Planck’s equation is explained as are the all-important fractional functions of the first and second kinds which result when Planck’s equation is integrated between finite limits. A number of theoretical developments are discussed that stem directly from Planck’s law, as are the various computational matters that arise when numerical evaluation is required. Basic elements of radiometry that tie together and use many of the theoretical and computational ideas developed is also presented.
Section III – A comprehensive account of the various computational aids such as tables, nomograms, graphs, and radiation slide rules devised and used by generations of scientists and engineers when working with blackbody radiation are presented as are more recent aids utilizing computers and digital devices for real-time computations.
Scientists and engineers working in fields utilizing blackbody sources will find this book to be a valuable guide in understanding many of the computational aspects and nuances associated with Planck’s equation and its other closely related functions. With over 700 references, it provides an excellent research resource.
Seán M. Stewart recently joined Nazarbayev University in Astana where he is an associate professor of engineering mathematics. Before moving to Kazakhstan, he spent eleven years working at The Petroleum Institute in Abu Dhabi, United Arab Emirates, where he was an associate professor in the Department of Mathematics. His main research interests lie in the fields of applied mathematics and in the history of computation. R. Barry Johnson has been involved for over 40 years in infrared technology, lens design, optical systems design, and electro-optical systems engineering, and has used many of the devices and techniques described in this book, and knew many of the individuals mentioned therein. He developed the method of integrating Planck’s equation using the method of Gauss–Laguerre quadrature. Dr Johnson is a Senior Research Professor at Alabama A&M University and has been a faculty member at two other academic institutions engaged in optics education and research, employed by a number of companies, and has provided consulting services within the field. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and is an SPIE past president (1987). He has been awarded many patents and has published numerous scientific and technical articles. Dr. Johnson was awarded the 2012 OSA/SPIE Joseph W. Goodman Book Writing Award for Lens Design Fundamentals, Second Edition. He is a perennial co-chair of the annual SPIE Conference Current Developments in Lens Design and Optical Engineering.
SECTION I: THE BLACKBODY PROBLEMChapter 1. Thermal radiation and the blackbody problem1.1 Towards a solution to the blackbody problem1.2 Planck and the blackbody problem1.3 The work of the experimentalists1.4 Thermal laws from dimensional analysis1.5 Transition and new beginningsSECTION II: THEORETICAL AND NUMERICAL MATTERSChapter 2. Theoretical developments2.1 Spectral representations2.2 Two important special functions2.2.1 Polylogarithms2.2.2 The Lambert W function2.3 Two common spectral scales used to represent blackbody radiation2.4 Other spectral scale representations2.5 Ephemeral spectral peaks2.6 Logarithmic spectral scales2.7 The radiometric and actinometric cases2.8 Normalized spectral exitance2.9 The Stefan–Boltzmann law2.9.1 The traditional approach2.9.2 A polylogarithmic approach2.10 Fractional functions of the ?rst kind2.11 Fractional functions of other kinds2.12 Centroid and median wavelengths2.13 The standard probability distribution and cumulative probability distribution functions for blackbody radiation2.14 Infrared, visible, and ultraviolet components in the spectral distribution of blackbody radiationChapter 3. Computational and numerical developments3.1 Approximations to the spectral exitance3.1.1 The laws of Wien and Rayleigh–Jeans3.1.2 Extended Wien and Rayleigh–Jeans approximations3.1.3 Polynomial interpolation and logarithmic correction factors3.1.4 Laurent polynomials and non-rational approximations of Erminy3.2 Computation of the fractional function of the ?rst kind3.2.1 Series expansion methods3.2.1.1 Large arguments3.2.1.2 Small arguments3.2.1.3 Division point
Reihe/Serie | Optical Sciences and Applications of Light |
---|---|
Zusatzinfo | 14 Tables, black and white; 78 Illustrations, black and white |
Verlagsort | Bosa Roca |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 725 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Optik |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
ISBN-10 | 1-4822-6312-2 / 1482263122 |
ISBN-13 | 978-1-4822-6312-1 / 9781482263121 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich