Methane Combustion over Lanthanum-based Perovskite Mixed Oxides
Springer Berlin (Verlag)
978-3-662-46990-3 (ISBN)
Dr. Arandiyan was awarded his PhD ranking EXCELLENT from School of Environment at Tsinghua University (THU) Top University in China and recipient of several awards and fellowships working under the supervision of Prof. Junhua Li (a world leader in environmental catalysis) in July 2014, seven months prior to submitting this book publishing. In the last years before and after graduation, he has been invited to do research at Zeolite Research Group (2008) where he was a Senior Researcher in the Science and Technology Park of Tehran University in the laboratories of Prof. H. Kazemian. Afterwards, he worked in Prof. Hongxing Dai's Laboratory of Catalysis Chemistry and Nanoscience group at Beijing University of Technology (2013). In July 2014, just before the completion of his PhD degree at THU, he employed as a full-time Research Associate at the School of Chemical Engineering, the University of New South Wales (UNSW). Subsequently, he was awarded 2015 UNSW Vice-Chancellor's Postdoctoral Research Fellowship, which enables his conduct two-year full-time research with potential extension to three years. His PhD work was undertaken in a world-top research group in the field of heterogeneous catalysis with a focus on pollution control technologies, environmental protection, and perovskite materials. The group houses the state-of-the-art instruments including well-established in-situ FT-IR and cutting-edge analytical electron microscopy enabling the monitoring of catalysts and reactions. The group was sustained by 16 interdisciplinary members of faculty at the THU and Chinese Academy of Sciences (CAS) which also part of the Hi-Tech Research and Development Program of China (863), financed by National Natural Science Foundation of China (NSFC), Sino-Japan Collaboration Project funded by Toyota Motor Inc. and Ford Motor Co. in Michigan (USA) where Dr Arandiyan got the prestigious doctoral fellowship. He actively involved in research in the advanced analysis on developing noble 3D catalysts for vehicle emissions control which is cutting edge in nature and will be the foundation for developing 3D hybrid perovskite structures for VOCs oxidation. It can be demonstrated through his excellent research track record (1 Scholarly Book Chapter, 38 relevant peer-reviewed articles, 18 Intl. Conference papers, and 3 Patents in research filed of the proposed book publishing). He had two semesters teaching experience in School of Chemical Engineering at Azad University. He also has been invited to be a reviewer for more than 20 referred international journals. During last years, most of his time is allocated for research. Besides this he has been achieved several scientific awards for instance: he won 2013 First Grand Prize "American Dow Sustainability Innovation Challenge Award", which is highly competitive and funds top (US$ 10K) new investigator scientists from USA and Europe. He has also awarded "Outstanding PhD Dissertation" (2014), "Young Scientist Award" Taiwan (2013), "Certificate of Appreciation Research" by Iran's Ambassador in China (2014). It was an honour when he was appointed the youngest ever Top 10 Student of Tsinghua University Award for 2013. It's not hard to see how tough it is to stand out from the more than 40,000 students from dozens of departments. Among all 4-5th year talented PhD students, second year PhD candidate (Dr. Arandiyan) became the first foreign student to accomplish this award in 102 years. He takes great satisfaction in being a significant role model for international students at Tsinghua University, which is considered to be a Top Chinese University. Furthermore, a number of other honours have followed including: Received "Chinese Government Scholarship-CSC" Ministry of Education of China (2012-2014), "Comprehensive Postgraduate Scholarship" at THU (2013), "Outstanding Publication PhD Candidate" (2013), "Outstanding Qualifying Doctoral Examination" (2012), and "Chinese Scholarship Council" (2011). In the l
Introduction.- Research background.- Catalytic combustion over cheaper metal oxides.- Catalytic combustion of methane over 1D LSCO nanowires.- Catalytic combustion of methane over 3DOM LSMO with high surface areas.- Catalytic combustion of methane over 3DOM LSMO supported Ag NPs.
Erscheint lt. Verlag | 18.5.2015 |
---|---|
Reihe/Serie | Springer Theses |
Zusatzinfo | XXII, 103 p. 66 illus., 13 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Technik | |
Schlagworte | Low-temperature Reducibility • Methane Combustion • Perovskite-type Oxide • Templating Preparation Method • Three-dimensionally Ordered Macroporous |
ISBN-10 | 3-662-46990-1 / 3662469901 |
ISBN-13 | 978-3-662-46990-3 / 9783662469903 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich