Jonathan Worstell earned his Physics degree from Northwestern University then switched to the chemical sciences, earning an MS in Chemistry from Ball State University and a PhD in Applied Chemistry from Colorado School of Mines. Dr. Worstell worked at Eli Lilly and Company and Northwestern University Medical School prior to starting a thirty year career in the petrochemical industry. After retiring from the petrochemical industry, he began an academic career at University of Houston where he teaches senior level chemical engineering courses. Dr. Worstell also consults with several global petrochemical companies.
Front Cover 1
Batch and Semi-batch Reactors 4
Copyright Page 5
Dedication 6
Contents 8
1 Introduction 10
Chemical Reactions and Processes 10
Batch and Semi-Batch Reactors 12
Design of Batch and Semi-Batch Reactors 14
Summary 15
References 15
2 Batch Reactors 16
Quantitative Description of Batch Reactors 16
What Is RA? 18
Elucidation of Kinetic Relationships 22
Summary 38
References 39
3 Scaling Batch Reactors 40
Scaling Concentration, Temperature, Volume, Agitation 40
Scaling Heat Transfer 54
Summary 58
References 58
4 Semi-Batch Reactors 60
Reactor Choice: Batch or Semi-Batch Reactor 60
Miscible Liquid–Liquid Semi-Batch Processes 65
Kinetic Analysis 65
Thermal Analysis 70
Immiscible Liquid–liquid Semi-Batch Processes 72
Kinetic Analysis 72
Thermal Analysis 79
Gas–Liquid Semi-Batch Processes 81
Kinetic Analysis 81
Thermal Analysis 91
Summary 92
References 92
5 Batch and Semi-Batch Operations 94
Process Cycle Time 94
Process Operating Temperature 105
Summary 109
References 109
Batch Reactors
This chapter presents a quantitative description of batch reactors. It also “derives” the variables which control a chemical reaction conducted in a batch reactor. This chapter includes a discussion about specifying the proportionality constant, i.e., the reaction rate constant, which quantifies the relationship between chemical reaction rate and concentration. This chapter uses the saponification of ethyl acetate to demonstrate the various procedures for specifying the reaction rate constant.
Keywords
Batch reactor; chemical reaction rate; reaction rate constant; reaction order; initial reaction rate; initial reactant concentration
Quantitative Description of Batch Reactors
Consider the typical batch reactor, which in the laboratory is a spherical glass container with ports for reagent addition and sample removal and possibly a centerline port accommodating an agitator shaft driven by an elevated, i.e., overhead, electric motor. An alternate method of mixing is to place a magnetic stirring bar in the reactor and drive it via a rotating magnet placed beneath the reactor.
We generally do not conduct gas-phase reactions in batch reactors. For a constant liquid volume, constant density reaction or process, the component balance for a laboratory batch reactor is
[A]∂t+(vr∂[A]∂r+vθr∂[A]∂θ+vφrsinθ∂[A]∂φ)=DAB(1r2∂∂r(r2∂[A]∂r)+1r2sinθ∂∂θ(∂[A]∂θ)+1r2sin2θ∂2[A]∂φ2)+RA
where [A] is the concentration of component A (mol/m3); t is the time (seconds, s); r is the radial direction, generally taken from the geometric center point of the spherical reactor (m); θ is the polar angle taken from the vertical reference axis to the point in question (dimensionless); φ is the azimuthal angle or longitude taken around the reference axis to the point in question (dimensionless); vr is the velocity in the radial direction (m/s); vθ is the polar angular velocity (m/s); vφ is the azimuthal velocity (m/s); DAB is the diffusivity (m2/s) of component A in solvent B, if a solvent B is present; and, RA is the formation of A or the consumption of A by chemical reaction (mol/m3*s).
We assume the concentration of component A in the r, θ, and φ directions is constant due to agitation and the absence of directed convection1; therefore
vr∂[A]∂r+vθr∂[A]∂θ+vφrsinθ∂[A]∂φ)=0
If the agitator maintains continuous, thorough mixing of the reactor’s contents, then we assume molecular diffusion to be negligible during the chemical reaction; thus
AB(1r2∂∂r(r2∂[A]∂r)+1r2sinθ∂∂θ(∂[A]∂θ)+1r2sin2θ∂2[A]∂φ2)=0
The component balance for A therefore reduces to
d[A]dt)Spherical=RA
At a production facility, the typical batch reactor is a circular cylinder mounted vertically in a support structure. We generally weld hemispheric caps to the top and bottom of the cylinder. A vertical agitator shaft extends through the top cap of the cylinder. A bearing seal surrounds the vertical shaft as it passes through the top cap, thereby isolating the reactor’s contents from the environment. An electric motor powers the agitator shaft via a gearbox. Various nozzles with block valves penetrate the top cap; liquid feeds enter the reactor through these nozzles. The finished product exits the reactor through a valve generally placed at the center of the bottom cap. The component balance for such a reactor is
[A]∂t+(vr∂[A]∂r+vθr∂[A]∂θ+vz∂[A]∂z)=DAB(1r∂∂r(r∂[A]∂r)+1r2∂2[A]∂θ2+∂2[A]∂z2)+RA
where [A] is the concentration of component A (mol/m3); t is the time (s); r is the radial direction, generally taken from the geometric center line of the cylindrical reactor (m); z is the vertical axis of the cylinder (m); θ is the azimuthal angle or longitude taken around the z axis (dimensionless); vr is the velocity in the radial direction (m/s); vz is the velocity in the axial direction (m); vθ is the azimuthal velocity (m/s); DAB is the diffusivity (m2/s) of component A in solvent B; and, RA is the formation of A or the consumption of A by chemical reaction (mol/m3*s).
As for the laboratory batch reactor, we assume the concentration of component A in the r, θ, and z directions is constant due to agitation and the absence of directed convection.1 Therefore
vr∂[A]∂r+vθr∂[A]∂r+vz∂[A]∂z)=0
If the agitator maintains continuous, thorough mixing of the reactor’s contents, then we assume molecular diffusion to be negligible during the chemical reaction; thus
1r∂∂r(r∂[A]∂r)+1r2∂2[A]∂θ2+∂2[A]∂z2)=0
The component balance for a commercial-sized circular, cylindrical batch reactor reduces to
d[A]dt)Cylinder=RA
We can make two statements with regard to
d[A]dt)Cylinder=RAand(d[A]dt)Spherical=RA
First, neither rate depends upon a geometric variable, so long as the concentrations and reaction temperature in the cylindrical reactor equal the concentrations in the spherical reactor, which is generally the case for liquid-phase reactions. Thus, upscaling and downscaling a chemical reaction within a batch reactor is relatively straightforward, at least for constant volume, constant density, liquid-phase reactions.2 If the reaction volume changes or the density of the contained liquid changes during reaction, then we must consider geometric similarity during upscaling and downscaling. Second, both rates depend upon RA.
What Is RA?
To upscale or downscale a batch reactor, we need to know upon what RA depends. Consider the generalized chemical reaction
*Reactants→p*Products
where r and p are the stoichiometric quantities for Reactants and Products, respectively. We know from thermodynamics that, when a chemical reaction reaches equilibrium, the rate of product formation from reactants equals the rate of reactant formation from products. Mathematically
=kForwardkReverse
where K is the equilibrium constant for the chemical reaction; kForward is a constant describing the rate of product formation from reactants; and, kReverse is a constant describing the rate of reactant formation from products. We also know from thermodynamics that
=[Products]p[Reactants]r
ForwardkReverse=[Products]p[Reactants]r
or
Forward[Reactants]r=kReverse[Products]p
Note that for Forward[Reactants]r, kForward has units of m3/mole)r−1(1/s). Therefore, if r=1, then
m3/mole)r−1(1/s)=(m3/mole)1−1(1/s)=(m3/mole)0(1/s)=(1/s)
The same is true for Reverse[Products]p. In other words, Forward[Reactants]r and Reverse[Products]p have the same units as RA, which leads to our equating them. Thus, RA in the forward reaction direction must be a function of reactant concentration while in the reverse reaction direction it must be a function of product concentration. The kinetic theory of gases also indicates that the collision of gas molecules and their resultant reaction with each other depends upon the concentration of each component gas.3
Note that r and p in the above equation are the stoichiometric quantities for the reaction after it reaches equilibrium. However, chemical reaction rate studies, i.e., kinetic studies, do not investigate the equilibrium condition of chemical reactions; thermodynamics investigates the equilibrium condition of a chemical reaction. Kinetics investigates the rate at which a chemical reaction reaches its equilibrium condition. With regard to kinetics, our strongest assertion can only be
[Reactant]dt=−kForward[Reactant]x
or
[Product]dt=−kReverse[Product]y
where x and y are unknowns not necessarily related to the stoichiometric quantities r and p of the reaction.
The above reaction rate equations indicate that we are eventually going to integrate [Reactant] from [Reactant]t=0 at t=0, when we start the chemical reaction, to [Reactant]t at time t, when we stop the chemical reaction. That integration gives us
Reactant]t−[Reactant]t=0
which will be negative since
Reactant]t<<[Reactant]t=0
But, for chemical reactions, rates of change are positive. Therefore, we insert the negative sign in the above equation to obtain a positive rate of change. We interpret the negative sign as denoting consumption of a chemical species; we interpret a positive sign as denoting formation of a chemical species.
Thermodynamics also indicates how the equilibrium constant depends on changing temperature. The Clausius–Clapeyron...
Erscheint lt. Verlag | 26.2.2015 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-12-801465-2 / 0128014652 |
ISBN-13 | 978-0-12-801465-3 / 9780128014653 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 3,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich