Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Estimation and Selection in High-Dimensional Genomic Studies

Multiple Testing, Gene Ranking, and Classification
Buch | Softcover
90 Seiten
2020 | 1st ed. 2020
Springer Verlag, Japan
978-4-431-55566-7 (ISBN)
CHF 74,85 inkl. MwSt
  • Titel wird leider nicht erscheinen
  • Artikel merken
This book provides an overview of the statistical methods used in genome-wide screening of relevant genomic features or genes. Gene screening can facilitate deeper understanding of disease biology at the molecular level, possibly leading to discovery of new molecular targets for developing new treatments and developing diagnostic tests to predict patients' prognosis or response to treatment. The most common approach to such gene screening studies is to apply multiple univariate analysis based on separate statistical tests for individual genes to test the null hypothesis of no association with clinical variables. This book first provides an overview of the state of the art of such multiple testing methodologies for gene screening, including frequentist multiple tests, empirical Bayes, and full-Bayes model-based methods for controlling the family-wise error rate or false discovery rate. Optimal discovery procedures and model-based variants are also discussed. Although great endeavor has been directed toward developing multiple testing methods, there are other, more relevant and effective analyses that should be given much attention in gene screening, including gene ranking, estimation of effect sizes, and classification accuracy based on selected genes. The core contents of this book provide a framework for integrated gene screening analysis based on hierarchical mixture modeling and empirical Bayes. Within this framework effective tools for multiple testing, ranking, estimation of effect size, and classification accuracy are derived. Methods for sample size determination for gene screening studies are also provided. With this content, the book is certain to expand the existing framework of statistical analysis based on multiple testing for gene screening to one based on estimation and selection.

1. Introduction: Genomic biomarkers for personalized medicine: Background of gene screening studies for personalized medicine.- 2. Multiple significance testing using false discovery rate.- 3. Model-based approaches for effective gene selection.- 4. The optimal discovery procedure for multiple significance testing.- 5. Bayesian ranking and selection methods for gene screening.- 6. Estimation and selection for developing genomic signatures.- 7. Power and sample size assessment.

Erscheint lt. Verlag 23.4.2020
Reihe/Serie JSS Research Series in Statistics
SpringerBriefs in Statistics
Zusatzinfo X, 90 p.
Verlagsort Tokyo
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Naturwissenschaften Biologie
Schlagworte Analysis of High-dimensional Genomic Data • Gene Screening • Genomic Signature Development • Hierarchical Mixture Modelling and Empirical Bayes • multiple testing • Personalized medicine
ISBN-10 4-431-55566-8 / 4431555668
ISBN-13 978-4-431-55566-7 / 9784431555667
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein überfälliges Gespräch zu einer Pandemie, die nicht die letzte …

von Christian Drosten; Georg Mascolo

Buch | Hardcover (2024)
Ullstein Buchverlage
CHF 34,95

von Matthias Egger; Oliver Razum; Anita Rieder

Buch | Softcover (2021)
De Gruyter (Verlag)
CHF 67,50