Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nonsmooth/Nonconvex Mechanics -

Nonsmooth/Nonconvex Mechanics

Modeling, Analysis and Numerical Methods
Buch | Hardcover
476 Seiten
2001
Springer (Verlag)
978-0-7923-6786-4 (ISBN)
CHF 209,70 inkl. MwSt
Offers a discussion of mathematical topics including variational and hemivariational inequalities, duality, complementarity, variational principles, sensitivity analysis, eigenvalue and resonance problems, and minimax problems. This book considers applications in different areas such as nonsmooth statics and dynamics.
Nonsmoothness and nonconvexity arise in numerous applications of mechan- ics and modeling due to the need for studying more and more complicated phe- nomena and real life applications. Mathematicians have started to provide the necessary tools and theoretical results underpinning these applications. Ap- plied mathematicians and engineers have begun to realize the benefits of this new area and are adopting, increasingly, these new tools in their work. New computational tools facilitate numerical applications and enable the theory to be tested, and the resulting feedback poses new theoretical questions. Because of the upsurge in activity in the area of nonsmooth and noncon- vex mechanics, Professors Gao and Ogden, together with the late Professor P.D. Panagiotopoulos, had planned to organize a Minisymposium with the title Nonsmooth and Nonconvex Mechanics within the ASME 1999 Mechanics & Materials Conference, June 27-30 1999, Blacksburg, Virginia. After the unex- pected death of Professor Panagiotopoulos the first two editors invited the third editor (Professor Stavroulakis) to join them.
A large number of mathematical and engineering colleagues supported our efforts by presenting lectures at the Minisymposium in which the available mathematical methods were described and many problems of nonsmooth and nonconvex mechanics were discussed. The interest of the many participants encourages us all to continue our research efforts.

Contributing Authors. Preface. In Memoriam, Professor P.D. Panagiotopoulos. 1. Stability of a quasi-static evolution; F. Abed-Meraim, Q.S. Nguyen. 2. Variational principles for self-adjoint elliptic eigenproblems; G. Auchmuty. 3. A sensitivity equation method for conduction and phase change problems; J. Borggaard, D. Pelletier. 4. Rock's interface problem including adhesion; Y. Dumont, D. Goeleven, K.L. Kuttler, M. Rochdi, M. Shillor. 5. On a class of differential-hemivariational inequalities; M. Foundo. 6. Nonsmooth/nonconvex dynamics: Duality, polarity, compklementary extrema; D.Y. Gao. 7. Signorini problem with a given friction; J. Haslinger, Z. Dostál, R. Kuccera. 8. Debonding of adhesively bonded composite structures; D.N. Kaziolas, M.J. Kontoleon, C.C. Baniotopoulos. 9. Effect of nonlinearity in nonsmooth and nonconvex structural behaviour; M. Kurutz. 10. Pseudoelastic solutions for one-dimensional martensite phase transitions; K.A. Lazopoulos. 11. Inverse Coefficient Problem; S. Migórski, A. Ochal. 12. Solutions to eigenvalue problems for hemivariational inequalities; D. Motreanu. 13. Non-smooth changes in elastic material properties under finite deformation; R.W. Ogden. 14. Nonlinear Resealing in discrete minimax; R.A. Polyak, I. Griva, J. Sobieszczanski-Sobieski. 15. Multivalued problems with strong resonance; V. Radulescu. 16. Freely propagating waves in a supported nonlinear elastic beam; D.L. Russell. 17. Shape sensitivities for optimal design: A case study;L.G. Stanley. 18. Optimal design and identification problems in nonsmooth mechanics; G.E. Stavroulakis. 19. Adhesively Supported von Karman Plate; K. Tsilika. 20. Optimality conditions of semi-invex functions; V. Vetrivel, J. Dutta. 21. The chaotic behavior of a physicallynonlinear beam; Y.-H. Xu. 22. Duality principle in nonholonomic mechanical systems; H. Yoshimura, T. Kawase.

Erscheint lt. Verlag 31.3.2001
Reihe/Serie Nonconvex Optimization and Its Applications ; 50
Zusatzinfo XLIV, 476 p.
Verlagsort Dordrecht
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Mechanik
ISBN-10 0-7923-6786-3 / 0792367863
ISBN-13 978-0-7923-6786-4 / 9780792367864
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90