Machine Learning and Data Mining Approaches to Climate Science
Springer International Publishing (Verlag)
978-3-319-17219-4 (ISBN)
Dr. Valliappa Lakshmanan is an expert in machine intelligence for meteorological applications, and in designing and developing large-scale software systems. He is skilled in communicating technical and non-technical material to diverse audiences. He has studied at the Indian Institute of Technology in Madras, the Ohio State University in Columbus and the University of Oklahoma. Dr. Lakshmanan is currently employed as a Research Scientist at CIMMS, being the technical lead on several software projects and research groups. He also develops automated real-time pattern recognition algorithms and visualization techniques for weather phenomena. He has (co-)written many journal articles.
From the Contents: Machine learning, statistics, or data mining, applied to climate science.- Management and processing of large climate datasets.- Long and short-term climate prediction.- Ensemble characterization of climate model projections.- Past (paleo) climate reconstruction.
Erscheint lt. Verlag | 10.7.2015 |
---|---|
Zusatzinfo | IX, 252 p. 89 illus., 73 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Biologie ► Ökologie / Naturschutz |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Naturwissenschaften ► Geowissenschaften ► Meteorologie / Klimatologie | |
Schlagworte | climate change • Climate extremes • Climate Informatics • climate prediction • Data Mining • Pattern Recognition for Climate |
ISBN-10 | 3-319-17219-0 / 3319172190 |
ISBN-13 | 978-3-319-17219-4 / 9783319172194 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich