Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Cell Physiology Sourcebook -

Cell Physiology Sourcebook (eBook)

A Molecular Approach

Nicholas Sperelakis (Herausgeber)

eBook Download: PDF
2001 | 3. Auflage
1235 Seiten
Elsevier Science (Verlag)
978-0-08-052880-9 (ISBN)
Systemvoraussetzungen
75,95 inkl. MwSt
(CHF 74,20)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This completely revised and updated source book provides comprehensive and authoritative coverage of cell physiology and membrane biophysics. Intended primarily as a text for advanced undergraduate and graduate students and as a reference for researchers, this multidisciplinary book includes several new chapters and is an invaluable aid to scientists interested in cell physiology, biophysics, cell biology, electrophysiology, and cell signaling.* Includes broad coverage of both animal and plant cells * Appendices review basics of the propagation of action potentials, electricity, and cable properties
This completely revised and updated source book provides comprehensive and authoritative coverage of cell physiology and membrane biophysics. Intended primarily as a text for advanced undergraduate and graduate students and as a reference for researchers, this multidisciplinary book includes several new chapters and is an invaluable aid to scientists interested in cell physiology, biophysics, cell biology, electrophysiology, and cell signaling.* Includes broad coverage of both animal and plant cells * Appendices review basics of the propagation of action potentials, electricity, and cable properties

Front Cover 1
Cell Physiology Sourcebook: A Molecular Approach 4
Copyright Page 5
Table of Contents 8
Contributors 12
Foreword to the First Edition 16
Foreword to the Second Edition 18
Foreword to the Third Edition 20
Preface to the First Edition 22
Preface to the Second Edition 24
Preface to the Third Edition 26
Section I: Biophysical Chemistry, Metabolism, Second Messengers, and Ultrastructure 28
Chapter 1. Biophysical Chemistry of Physiological Solutions 30
I. Introduction 30
II. Structure and Properties of Water 30
llI. Interactions Between Water and Ions 32
IV. Protons in Solution 34
V. Interactions Between Ions 35
VI. Cell Cations 37
VII. Cell Anions 38
VIII. Trace Elements 38
IX. Solute Transport: Basic Definitions 39
X. Measurement of Electrolytes and Membrane Potential 39
XI. Ionophores 40
XII. Summary 40
Bibliography 41
Appendix: Thermodynamics of Membrane Transport 43
Chapter 2. Physiological Structure and Function of Proteins 46
I. Molecular Structure of Proteins 46
II. Techniques for the Determination of the Structures of Proteins 52
III. Bulk Properties of Proteins: Proteins as Polyelectrolytes 55
IV. Relationship of Protein Structure to Function 59
V. Summary 68
Bibliography 68
Chapter 3. Structural Organization and Properties of Membrane Lipids 70
I. Introduction 70
II. Classification and Structures of Membrane Lipids 70
III. Structural Organizations of Membrane Lipids 78
IV. The Thermodynamic and Conformational Properties of Bilayers 80
V. Binary Phospholipid Mixtures 86
VI. Summary 89
Bibliography 89
Chapter 4. Cell Membranes and Model Membranes 92
I. Membrane Structure 92
II. Planar Lipid Bilayers 100
III. Ion Channel Properties in Planar Lipid Bilayers 101
IV. Gramicidin 102
V. Summary 105
Bibliography 105
Chapter 5. Lipid Domains and Biological Membrane Function 108
I. Introduction 108
II. General Structure of Biological Membranes 108
III. The Plasma Membrane Lipid Bilayer: Transbilayer Lipid Distribution 110
IV. Lateral Lipid Microdomains in Membranes 112
V. Transbilayer Asymmetry in Fluidity 113
VI. Lateral Plasma Membrane Lipid Domain Fluidity 114
VII. The Plasma Membrane Lipid Bilayer: Protein Distribution 114
VIII. Intracellular Membranes 117
IX. Membrane Biogenesis 118
X. Summary 119
Bibliography 119
Chapter 6. Ultrastructure of Cells 122
I. Introduction: The Plasma Membrane as the Basis of Cellularity 122
II. Nucleus 125
III. Endoplasmic Reticulum 128
IV. Golgi Apparatus 128
V. Lysosomes 130
VI. Mitochondria 132
VII. Cytoskeleton 134
VIII. Cell functions 140
IX. Special Tissues, Specialized Ultrastructure 141
X. Summary 143
Bibliography 144
Chapter 7. Energy Production and Metabolism 146
I. Introduction 146
II. Protein Enzymes 146
III. Enzyme Kinetics 147
IV. Enzyme Inhibitors 149
V. Metabolic Pathways 150
VI. Generation of Energy: Mitchell Chemiosmotic Hypothesis 153
VII. Food and Energy 155
VIII. Basic Pathways That Need to be Regulated 155
IX. Energy Forms Revisited 161
X. Cori Cycle 163
XI. Summary 164
Bibliography 165
Chapter 8. Physiology of Mitochondria 166
I. Introduction 166
II. Chemiosmotic Theory 166
III. What Determines the Respiration Rate in Cells? 167
IV. What Determines the Rate of ATP Synthesis in Cells? 168
V. Ion Leaks in Mitochondria 169
VI. The Mitochondrial Proton Cycle— the Uncoupling Proteins 171
VII. The Anion Exchange Carriers 172
VIII. The Mitochondrial Calcium Cycle 172
IX. The Mitochondrial Potassium Cycle 173
X. The Physiological Role of MitoKATp in Heart 174
XI. MitoKATp as the End Effector of Protection Against Ischemia-Reperfusion Injury 174
XII. The Mitochondrial Permeability Transition (MPT) 175
XIII. Mitochondrial Involvement in Apoptosis 176
XIV. Summary 177
Bibliography 177
Chapter 9. Signal Transduction 180
I. Introduction 180
II. Second Messengers 180
III. Signaling by Receptor Phosphorylation 190
IV. Other Signaling Mechanisms 190
V. Summary 192
Bibliography 192
Chapter 10. Calcium as an Intracellular Second Messenger: Mediation by Calcium-Binding Proteins 194
I. Introduction 194
II. Determination of Ca2+ Involvement in Physiological Processes 194
III. Ca2+ as an Intracellular Signal 195
IV. Creation of the Ca2+ Signal 195
V. Mediation of Ca2+ Signal 196
VI. Ca2+-Calmodulin Dependent Protein Kinase II 197
VII. Annexins: Calcium-Dependent Phospholipid-Binding Proteins 198
VIII. Protein Kinase C 199
IX. Current Perspectives 200
X. Summary 203
Bibliography 204
Chapter 11. Regulation of Cellular Functions by Extracellular Calcium 206
I. Introduction 206
II. Systemic Calcium Homeostasis 206
III. The Calcium Receptor 207
IV. Calcium Receptor-Dependent Regulation of Cellular Functions 211
V. Summary 215
Bibliography 216
Chapter 12. Cellular Responses to Hormones 218
I. Introduction 218
II. Actions of Lipophilic Hormones via Intracellular Receptors 218
III. Cellular Actions of Protein and Amine Hormones via Plasma Membrane Receptors 224
IV. Integration of Signal Transduction Pathways in Health and Disease 231
V. Summary 232
Bibliography 232
Section II: Membrane Potential, Transport Physiology, Pumps, and Exchangers 234
Chapter 13. Diffusion and Permeability 236
I. Introduction 236
II. Fick's Law of Diffusion 237
III. Diffusion Coefficient 237
IV. Diffusion Across a Membrane with Partitioning 239
V. Electrodiffusion 240
VI. Ussing Flux Ratio Equation 242
VII. Summary 243
Appendix: Exponential Time Course of Diffusion 244
Chapter 14. Origin of Resting Membrane Potentials 246
I. Introduction 246
II. Passive Electrical Properties 246
III. Maintenance of Ion Distributions 248
IV. Equilibrium Potentials 253
V. Electrochemical Driving Forces and Membrane Ionic Currents 256
VI. Determination of Resting Potential and Net Diffusion Potential (Ediff) 257
VII. Electrogenic Sodium Pump Potentials 259
VIII. Summary 262
Appendix 264
Chapter 15. Gibbs-Donnan Equilibrium Potentials 270
I. Introduction 270
II. Mechanism for Development of the Gibbs-Donnan Potential 270
III. Gibbs-Donnan Equilibrium 272
IV. Quantitation of the Gibbs-Donnan Potential 272
V. Osmotic Considerations 273
VI. Summary 273
Bibliography 274
Chapter 16. Mechanisms of Carrier-Mediated Transport: Facilitated Diffusion, Cotransport, and Countertransport 276
I. Introduction 276
II. Electrochemical Potential 276
III. Carrier-Mediated Transport Mechanisms 277
Bibliography 286
Chapter 17. Sodium Pump Function 288
I. Introduction 288
II. Na+-K+ Transport 288
III. Transport Mechanism 289
IV. Na/K+-ATPase Structure 290
V. Cardiac Glycosides 294
VI. Summary 295
Bibliography 295
Chapter 18. Ca2 +-ATPases 298
I. Introduction 298
II. Sarcoplasmic Reticular (SR) Ca2 +-ATPase 299
III. Other ATPases 305
IV. Summary 306
Bibliography 307
Chapter 19. Na+-Ca2 + Exchange Currents 310
I. Introduction 310
II. Structure, Topology, and Distribution of the Na+-Ca2+ Exchanger 310
III. The Phylogerty of the Na+-Ca2+ Exchanger 311
IV. Isoforms of the Na+-Ca2+ Exchanger 311
V. Energetics of Na+-Ca2+ Exchange 311
VI. Methods and Problems Associated with the Measurement of Na+-Ca2+ Exchange Current 312
VII. Isolation of Na+-Ca2+ Exchange Current 315
VIII. Ionic Dependencies of Na+-Ca2 + Exchange Current 316
IX. Regulation of Na+-Ca2+ Exchange Current 317
X. Cur rent-Vol tage Relationships and Voltage Dependence of Na+-Ca2+ Exchange Current 319
XL Mechanism of Na+-Ca2+ Exchange 321
XII. Na+-Ca2+ Exchange Currents during the Cardiac Action Potential 322
XIII. Na+-Ca2+ Exchange Currents and Excitation-Contraction Coupling 323
XIV. Summary 324
Bibliography 325
Chapter 20. Intracellular Chloride Regulation 328
I. Introduction 328
II. Passive and Nonpassive Cl- Distribution across the Plasma Membrane 329
III. Active Transport Mechanisms for Cl 329
IV. Electroneutral Na+-K+-Cl- Cotransporters 330
V. Electroneutral K+-Cl- Cotransporters 340
VI. Electroneutral Na+-Cl- Cotransporter 342
VII. Cation-Chloride Cotransporters as Targets for Disease 343
VIII. Summary 343
Bibliography 343
Chapter 21. Osmosis and Regulation of Cell Volume 346
I. Introduction 346
II. Water Movement across Model Membranes 346
III. Mechanisms of Osmosis 352
IV. Water Movement across Cell Membranes 360
V. Regulation of Cell Volume under Isosmotic Conditions 363
VI. Regulation of Cell Volume under Anisosmotic Conditions 368
VII. Summary 378
Bibliography 378
Chapter 22. Intracellular pH Regulation 384
I. Introduction 384
II. pH and Buffering Power 384
III. Intracellular pH 386
IV. Organellar pH 386
V. Maintenance of a Steady-State pH 388
VI. Active Membrane Transport of Acids and Bases 389
VII. Cellular Functions Affected by Intracellular pH 393
VIII. Summary 398
Bibliography 398
Appendix: Techniques for pH Measurement 400
Chapter 23. Membrane Transport in Red Blood Cells 404
I. Introduction 404
II. Membrane and Cytoskeleton 404
III. Intracellular Environment 405
IV. Metabolism and Life Span 406
V. Membrane Transporters in Red Blood Cells 407
VI. Ionic and Osmotic Equilibrium and Cell Volume Regulation 410
VII. Anion Exchange and Conductance 413
VIII. Cytotoxic Calcium Cascade 415
IX. Summary 416
Bibliography 417
Section III: Membrane Excitability and Ion Channels 420
Chapter 24. Cable Properties and Propagation of Action Potentials 422
I. Introduction 422
II. Frequency-Modulated Signals 422
III. Cable Properties 423
IV. Conduction of Action Potentials 427
V. External Recording of Action Potentials 431
VI. Summary 432
Bibliography 432
Appendix 1: Propagation in Cardiac Muscle and Smooth Muscles 434
Appendix 2: Derivation of the Cable Equation and the AC Length Constant 439
Chapter 25. Electrogenesis of Membrane Excitability 444
I. Introduction 444
II. Action Potential Characteristics 444
III. Electrogenesis of Action Potential 450
IV. Effect of Resting Potential on Action Potential 463
V. Electrogenesis of Afterpotentials 463
VI. Summary 465
Bibliography 465
Chapter 26. Patch-Clamp Techniques and Analysis 468
I. Introduction 468
II. Patch-Clamp or Gigaseal Technique 469
III. Single-Channel Analysis 471
IV. Whole-Cell Currents 476
V. Summary 479
Bibliography 479
Chapter 27. Structure and Mechanism of Voltage-Gated Ion Channels 482
I. Introduction: How Is Ion Channel Structure Studied? 482
II. Biochemistry of Ion Channels: Purification and Characterization of Voltage-Gated Channels 482
III. Channel Structure Investigation through Manipulation of DNA Sequences Encoding Channel Polypeptides 485
IV. Molecular Mechanisms of Channel Function: How Does One Investigate Them? 492
V. Isoforms of Voltage-Gated Channels as Part of a Large Superfamily 501
VI. Future Directions 502
VII. Summary 502
Bibliography 503
Chapter 28. Biology of Neurons 506
I. Introduction 506
II. Ultrastructure 506
III. Neuronal Cytoskeleton 507
IV. Axoplasmic Flow 509
V. Regulatory Mechanisms for Axonal Transport 510
VI. Summary 510
Bibliography 511
Chapter 29. Ion Channels in Nonexcitable Cells 512
I. Introduction 512
II. Types of Ion Channels in Nonexcitable Cells 512
III. Functional Role of Ion Channels in Nonexcitable Cells 528
IV. Summary 533
Bibliography 533
Chapter 30. Ion Channels in Sperm 536
I. Introduction 536
II. Sperm Responses to Egg Components 536
III. Sperm Ion Channels 542
IV. Summary 546
Bibliography 547
Chapter 31. Biology of Gap Junctions 550
I. Introduction 550
II. Advantages of Electrical Synapses in Excitable Cells 550
III. Ubiquitous Membrane Permeable functions 550
IV. Structural Candidates for the Permeable Cell Junction 551
V. Ultrastructural Characterization of Gap functions and Correlations with Cell Coupling 551
VI. Molecular and Structural Studies of Gap Junction Proteins 551
VII. Two Large Families of Gap Junction Proteins 553
VIII. Channels within Gap Junctions 554
IX. Evidence for Charge Selectivity 555
X. Channel Properties of Different Connexins 556
XI. Gating by Ions and Second Messengers 556
XII. Regulation of Functions of Connexin-Based Gap Junctions at Multiple Levels 557
XIII. Specific Biological Functions of Gap Junctions 558
XIV. Gap Junctions in Human Disease and in Murine Models of Human Disease 560
XV. Summary 562
Bibliography 562
Chapter 32. Biophysics of the Nuclear Envelope 566
I. Introduction 566
II. Permeability of the Nuclear Envelope 566
III. Structure of the Nuclear Envelope 567
IV. Structure of the Nuclear Pore 568
V. Electrophysiology of the Nucleus 570
VI. Osmotic Effects in the Nucleus 572
VII. Electrical and Diffusional Forces across the Nuclear Envelope 574
VIII. Modulation of Ionic Nuclear Permeability by ATP 579
IX. Cytoskeletal Interaction with the Nuclear Ionic Flux 579
X. Summary 582
Bibliography 583
Chapter 33. Regulation of Ion Channels by Phosphorylation 586
I. Introduction 586
II. Types of Ca+ Channels 586
III. Cyclic AMP Stimulation of L-type Ca2+ Channels 588
IV. Cyclic GMP Inhibition of the Ca2+ Current 590
V. Inhibition by Muscarinic Agonists 595
VI. Protein Kinase C and Calmodulin Protein Kinase 596
VII. Na+, K+, and If Channels 596
VIII. Summary 596
Bibliography 597
Chapter 34. Direct Regulation of Ion Channels by G Proteins 600
I. Introduction 600
II. The G Protein Cyclic Reaction Mediates Receptor-to-Channel Signal Transmission 600
III. Electrophysiological Evidence for KG Channel Activation Mediated by G Proteins 600
IV. Direct Coupling of KG Channel Subunits to Gßy 601
V. Modulation of KG Channel Activity by PIP2 and Na+ Ions 604
VI. Participation of RGS Proteins in K Channel Regulation 605
VII. G-Protein-lnhibition of Calcium Channels 605
VIII. G Protein âa Subunits Inhibit Neuronal Ca2+ Channels 605
IX. Direct Interaction of Voltage-Gated Ca2+ Channels and Gßy 606
X. Conclusion 607
Bibliography 607
Chapter 35. Developmental Changes in Ion Channels 612
I. Introduction 612
II. Cardiomyocytes 612
III. Skeletal Muscle Fibers 618
IV. Neurons 621
V. Summary 623
Bibliography 624
Chapter 36. Regulation of Ion Channels by Membrane Proteins and Cytoskeleton 628
I. Introduction 628
II. Domain-Dependent Distribution of Ion Channels by Cytoskeleton-Associated and Cytoskeleton Proteins 628
III. Role of Phosphorylation in Cytoskeletal Protein-Directed Clustering of Ion Channels 639
IV. Regulation of Ion Channel Function by Cytoskeletal Proteins 640
V. Mechanosensitive Gating of Ion Channels and Cytoskeleton 644
VI. Summary of Cytoskeleton Effects on Ion Channels 644
Bibliography 645
Section IV: Ion Channels as Targets for Toxins, Drugs, and Genetic Diseases 650
Chapter 37. Ion Channels as Targets for Toxins 652
I. Introduction 652
II. Voltage-Sensitive Sodium Channels 652
III. Voltage-Activated and Ca2+-Activated Potassium Channels 659
IV. Voltage-Dependent Calcium Channels 664
V. Other Toxins and Channels 666
VI. Summary 667
Bibliography 667
Chapter 38. Ion Channels as Targets for Drugs 670
I. Calcium Channels 670
II. Sodium (Na+) Channels 674
Bibliography 676
Chapter 39. Ion Channels as Targets for Disease 680
I. Introduction 680
II. Ion Channel Diseases 680
III. Cl- Channels 682
IV. Na+ Channels 686
V. Ca2+ Channels 690
VI. K+ Channels 693
VII. Neurotransmitter-Gated Channels 695
VIII. Summary 696
Bibliography 697
Section V: Synaptic Transmission and Sensory Transduction 700
Chapter 40. Ligand-Gated Ion Channels 702
I. Introduction 702
II. Classes of Ligand-Gated Ion Channels 703
III. Basic Physiological Features 703
IV. Molecular Structure 706
V. Neuronal Acetylcholine Receptor Channels 709
VI. .-Aminobutyric Acid and Glycine 
710 
VII. Glutamate Receptor Channels 711
VIII. Summary 713
Bibliography 713
Chapter 41. Synaptic Transmission 716
I. Introduction 716
II. Structure and Function of Chemical Synapses: An Overview 716
III. Neurotransmission 718
IV. Summary 730
Bibliography 730
Chapter 42. Excitation-Secretion Coupling 732
I. Introduction 732
II. Cellular Components Involved in Excitation-Secretion Coupling 732
III. Cellular and Molecular Events in Chromaffin, Mast Cells, and Neuronal Synaptic Vesicles 738
IV. Hormone Release in Endocrine Cells 745
V. Summary 747
Bibliography 749
Chapter 43. Stimulus-Response Coupling in Metabolic Sensor Cells 752
I. Introduction 752
II. Stimulus-Secretion Coupling in the Pancreatic Islet Cells 752
III. Metabolic Sensing as Protection from Hypometabolic Injury 763
IV. Stimulus-Secretion Coupling in Carotid Chemoreceptor Cells 764
V. Stimulus-Contraction Coupling in Vascular Smooth Muscle Cells 767
VI. Coupling of Oxygen Sensing to Red Cell Production by Erythropoietin-Secreting Cells 768
Bibliography 769
Chapter 44. Mechanosensitive Ion Channels in Eukaryotic Cells 772
I. Introduction 772
II. MS Channel Breakthroughs 772
III. Stimulation of MS Channel Activity 775
IV. Diversity of MS Channels 776
V. MS Channels in Patches: Stretch Versus Damage Plus Stretch 779
VI. The Role of the Membrane Skeleton 780
VII. Delay and Adaptation: Mechanically Fragile Aspects of MS Channel Behavior 780
VIII . Physiology of MS Channels 781
IX. Other Explorations of MS Channels 783
X. Models for Gating of MS Channels 784
XI. Summary and Conclusions 785
Bibliography 785
Chapter 45. Sensory Receptors and Mechanotransduction 788
I. Introduction 788
II. Sensory Transduction 788
III. Sensory Adaptation 789
IV. Information Transmission by Sensory Receptors 790
V. Mechanoreceptors 791
VI. Experimental Mechanoreceptor Preparations 792
VII. Steps in Mechanoreception 793
VIII. Efferent Control of Mechanoreceptors 797
IX. Summary 798
Bibliography 798
Chapter 46. Acoustic Transduction 802
I. Introduction 802
II. Mammalian Inner Ear Structure 802
III. Cell Physiology of Endolymph Homeostasis 802
IV. Cell Physiology of Acoustic Transduction 809
V. Summary 815
Bibliography 816
Appendix: Self-Referencing Electrodes for the Measurement of Extracellular Potential and Chemical Gradients 819
Chapter 47. Cyclic Nucleotide-Gated Ion Channels 822
I. Introduction 822
II. Physiological Roles and Locations 822
III. Control by Cyclic Nucleotide Enzyme Cascades 823
IV. Functional Properties 824
V. Molecular Structure 828
VI. Functional Modulation 829
VII. Summary 830
Bibliography 831
Chapter 48. Visual Transduction 834
I. Introduction 834
II. Photoreceptor Cells 834
III. Physiology of Visual Transduction 835
IV. Molecular Mechanisms 837
V. Summary 840
Bibliography 841
Chapter 49. Gustatory and Olfactory Sensory Transduction 842
I. Introduction 842
II. Taste Receptor Cells 842
III. Olfactory Receptor Cells 851
IV. Summary 856
Bibliography 857
Appendix: Infrared Sensory Organs 859
Chapter 50. Electroreceptors and Magnetoreceptors 866
I. Introduction 866
II. Ampullary Electroreceptors 867
III. Tuberous Electroreceptors 873
IV. Gymnotid Tuberous Electroreceptors 873
V. Mormyroidea 877
Bibliography 879
Appendix: The Biophysics of Electroreception in Ampullary Organs of Elasmobranch Fishes 884
Section VI: Muscle and Other Contractile Systems 890
Chapter 51. Skeletal Muscle Action Potentials 892
I. Introduction 892
II. General Overview of Electrogenesis of the Action Potential 893
III. Ion Channel Activation and Inactivation 893
IV. Mechanisms of Repolarization 894
V. Voltage-Dependent Cl- Channels 896
VI. ATP-Dependent K+ Channels 897
VII. Slow Delayed Rectifier K+ Current 899
VIII. Electrogenesis of Depolarizing Afterpotentials 899
IX. Ca2+-Dependent Slow Action Potentials 900
X. Developmental Changes in Membrane Properties 902
XI. Electrogenic Na+-K+ Pump Stimulation 902
XII. Slow Fibers 903
XIII. Conduction of the Action Potential 903
XIV. Excitation Delivery to Fiber Interior 905
XV. Summary 909
Bibliography 910
Chapter 52. Cardiac Action Potentials 914
I. Introduction 914
II. Resting Membrane Potential 914
III. Currents During Phases of the Action Potential 915
IV. Additional Currents Contributing to the Action Potential 920
VI. Automaticity 922
VII. Summary 924
Bibliography 924
Chapter 53. Smooth Muscle Action Potentials and Electrical Profiles 926
I. Introduction 926
II. Determinants of Membrane Potential 928
III. Voltage-Gated Ion Channels 928
IV. Receptor Modulation of Membrane Potential 931
V. Heterogeneous Electrical Properties of Smooth Muscle Cells 934
VI. Summary 936
Bibliography 936
Chapter 54. Excitation-Contraction Coupling in Skeletal Muscle 938
I. Introduction 938
II. Overview of EC Coupling 938
III. Speed of Skeletal Muscle Activation 940
IV. Membrane Architecture of EC Coupling 941
V. Mechanisms of Interaction between DHPRs and RyRs 946
VI. Summary 951
Bibliography 952
Chapter 55. Ca2 + Release from Sarcoplasmic Reticulum in Muscle 954
I. Introduction 954
II. Mechanisms of EC Coupling 955
III. Isolation of Membrane Fractions Enriched in RyR/Ca2+ Release Channels 956
IV. Isolation and Structure of RyRs 956
V. Molecular Cloning and Expression of RyRs 957
VI. RyRs Are High-Conductance Ligand-Gated Channels 959
VII. Identification of Functional Regions of Skeletal Muscle RyR 963
VIII. Summary 965
Bibliography 965
Chapter 56. Contraction of Muscles 968
I. Introduction 968
II. The Mechanisms of Force Production and Shortening: Muscle Mechanics 969
III. Muscle Energetics 976
IV. Muscle Metabolism 978
V. Comparative Muscle Physiology 979
VI. Summary 984
Bibliography 984
Chapter 57. Amoeboid Movement, Cilia, and Flagella 986
I. Introduction 986
II. Amoeboid Movement and Acting-Based Systems 986
III. Eukaryote Cilia and Flagella 993
IV. Other Microtubule Systems 1004
V. Summary 1009
Chapter 58. Centrin-Based Contraction and Bacterial Flagella 1012
I. Spasmonemes and Centrin-Containing Structures 1012
II. Prokaryote Locomotion 1019
III. Gliding and Other Movements 1023
IV. Summary 1027
Bibliography 1027
Chapter 59. Effects of High Pressure on Cellular Processes 1030
I. Introduction 1030
II. Molecular Effects of Pressure and Temperature 1031
III. Cellular Effects 1037
IV. Effects of Hydrostatic Pressure on Animals and Humans 1041
V. Adaptation to High Pressure 1045
VI. Summary 1046
Bibliography 1046
Chapter 60. Electrocytes of Electric Fish 1052
I. Introduction 1052
II. Anatomy of Electrophorus and Mechanism of the Electrical Discharge 1052
III. Electrocyte Membrane Electrophysiology 1054
IV. Comparative Physiology of Electrophorus and Torpedo—Models for Mammalian Excitable Cells 1059
V. Summary 1063
Bibliography 1064
Section VII: Protozoa and Bacteria 1066
Chapter 61. Physiological Adaptations of Protists 1068
I. Introduction 1068
II. Biophysical Constraints of Scale: The Example of Filter-Feeding 1069
III. Nutrition and Excretion 1070
IV. Energetic Adaptations: Fermentative Microbodies 1072
V. Sensory Adaptations, Membrane Potentials, and Ion Channels 1074
VI. Incorporation of Physiological Units from Other Cells 1079
VII. Structures with Unknown Functions 1081
VIII. Protistan Responses to Gravity and to Gradients of Oxygen and Light: An Example from Physiological Ecology 1083
IX. Summary: Protisten Diversity 1085
Bibliography 1086
Chapter 62. Physiology of Prokaryotic Cells 1090
I. Introduction 1090
II. Prokaryotic Cytology 1090
III. Metabolic Strategies 1095
IV. Energetics of Bacterial Cells 1096
V. Solute Transport 1097
VI. Stress Responses 1098
VII. Prokaryotes Living in Extreme Environments 1099
VIII. Summary 1101
Bibliography 1101
Section VIII: Plant Cells, Photosynthesis, and Bioluminescence 1104
Chapter 63. Plant Cell Physiology 1106
I. Introduction 1106
II. Plant Cell Ultrastructure 1106
III. Cell-to-Cell Communication 1113
IV. Membrane Transport 1115
V. Signal Perception and Response 1117
VI. Summary 1120
Bibliography 1120
Chapter 64. Photosynthesis 1124
I. Introduction 1124
II. Chloroplasts 1125
III. Biochemistry of Carbon Assimilation 1126
IV. Formation of ATP 1129
V. Photosynthetic Electron Transport 1133
VI. Regulation of Photosynthesis 1138
VII. Summary 1139
Bibliography 1139
Chapter 65. Bioluminescence 1142
I. Introduction 1142
II. Physical and Chemical Mechanisms 1142
III. Luminous Organisms: Abundance, Diversity, and Distribution 1143
IV. Functions of Bioluminescence 1143
V. Bacterial Luminescence 1146
VI. Dinoflagellate Luminescence 1149
VII. Coelenterates and Ctenophores 1151
VIII. Fireflies 1153
IX. Other Organisms: Other Chemistries 1154
X. Applications of Bioluminescence 1156
XI. Summary 1156
Bibliography 1157
Section IX: Cell Division and Programmed Cell Death 1160
Chapter 66. Regulation of Cell Division in Higher Eukaryotes 1162
I. Introduction 1162
II. General Overview 1163
III. Participants in the Cell Cycle 1168
IV. Transgenic Mice 1182
V. Summary 1182
Bibliography 1183
Chapter 67. Cancer Cell Properties 1188
I. Introduction 1188
II. The Cell Cycle 1188
III. Genome Stability 1190
IV. Cell Adhesion and Motility 1191
V. Apoptosis 1193
VI. Summary 1195
Bibliography 1195
Chapter 68. Apoptosis 1198
I. Introduction 1198
II. Morphological Characterization of Cell Death 1198
III. Regulation of Programmed Cell Death 1200
IV. Roles of Physiological Cell Death 1208
V. Frontiers in the Study of Apoptosis 1209
VI. Summary 1209
Bibliography 1209
Chapter 69. Effects of Ionizing Radiation on Cells 1212
I. Introduction 1212
II. Types of Radiation 1212
III. Interactions of Radiation with Matter 1213
IV. Measuring Radiation 1214
V. DNA Damage and Chromosome Breaks 1214
VI. Cell Survival Curves 1216
VII. Sensitivity and Phase of the Cell Cycle 1218
VIII. Molecular Checkpoint Genes 1220
IX. Repair of Radiation Damage 1220
X. The Mechanism of Sublethal Damage Repair 1221
XI. The Oxygen Effect 1222
XII. Radiation Quality and Biological Effects 1223
XIII. Radioprotectors 1225
XIV. Summary 1227
Bibliography 1227
Appendix 1230
Chapter 70. Review of Electricity and Cable Properties 1232
I. Introduction 1232
II. Definition of Circuit Elements and Ohm's Law 1232
III. Resistors and Conductances in Series and In Parallel 1233
IV. Kirchhoffs Laws 1234
V. Nature of Capacitors 1234
VI. Capacitors in Parallel and Series 1235
VII. Capacitive Reactance 1236
VIII. Membrane Impedance 1236
X. Membrane Time Constant 1238
XI. Specific Resistance and Specific Capacitance 1240
XII. Biological Cable Decrement 1242
XIII. Inductance, Inductive Reactance, and Oscillations 1244
XIV. Electromagnetic Spectrum 1246
Bibliography 1246
Index 1248

Erscheint lt. Verlag 15.5.2001
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
ISBN-10 0-08-052880-5 / 0080528805
ISBN-13 978-0-08-052880-9 / 9780080528809
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 286,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25