Nanogap Electrodes
Wiley-VCH (Verlag)
978-3-527-33271-7 (ISBN)
Wenping Hu is a Professor of the Institute of Chemistry, Chinese Academy of Sciences. He received his Ph.D. from the Institute in 1999. He then joined Osaka University as a research fellow of Japan society for the Promotion of Sciences and Stuttgart University as an Alexander von Humboldt fellow. In 2003 he worked for Nippon Telephone and Telegraph, and then returned to the Institute of Chemistry, Chinese Academy of Sciences. His research focuses on molecular electronics such as molecular solids and optoelectronic devices and he has more than 150 refereed publications.
1 NANOGAP ELECTRODES AND MOLECULAR ELECTRONIC DEVICE
1.1 Introduction
1.2 Overview of Molecular Electronic
1.3 Introduction to Nanogap Electrodes
1.4 Summary and Outlook
References
2 ELECTRON TRANSPORT IN SINGLE MOLECULAR DEVICE
2.1 Introduction
2.2 General Method
2.3 Single Electron Transport Through Single Molecular Junction
2.4 Effect of Many-Body Interactions
2.5 Thermoelectric Transport
2.6 First-Principles Simulations of Transport in Molecular Devices
2.7 Conclusions
References
3 FABRICATING METHODS AND MATERIALS FOR NANOGAP ELECTRODE
3.1 Introduction
3.2 Mechanical Controllable Break Junction
3.3 Electrochemical and Chemical Deposition Method
3.4 Oblique Angle Shadow Evaporation
3.5 Electromigration and Electrical Breakdown Method
3.6 Molecular Scale Template
3.7 Focused Ion Beam
3.8 Scanning Probe Lithography and Conducting Probe-Atomic Force Microscopy
3.9 Nanogap Electrodes Prepared with Non-Metallic Materials
3.10 Summary and Outlook
References
4. CHARACTERIZATION METHODS AND ANALYTICAL TECHNIQUES FOR NANOGAP JUNCTION
4.1 Current-Voltage Analysis
4.2 Inelastic Tunneling Spectroscopy (IETS)
4.3 Optical and Optoelectronic Spectroscopy
4.4 Concluding Remarks
Appendix
References
5. SINGLE-MOLECULE ELECTRONIC DEVICE
5.1 Introduction
5.2 Wiring Molecules Into "Gaps": Anchoring Groups and Assembly Method
5.3 Electrical Rectifier
5.4 Conductance Switches
5.5 Gating the Transport: Transistor-Like Single-Molecule Devices
5.6 Challenges and Outlooks
References
6 MOLECULAR ELECTRONIC JUNCTIONS BASED ON SELF-ASSEMBLED MONOLAYER
6.1 Introduction
6.2 Molecular Monolayers for Molecular Electronics Device
6.3 Top Electrodes
6.4 Experimental Progress with Ensemble Molecular Junctions
6.5 Outlook
References
7 TOWARDS DEVICES AND APPLICATION
7.1 Major Issues: Reliability and Robustness
7.2 Potential Integration Solutions
7.3 Beyond Simple Charge Transport
7.4 Electrochemistry with Nanogap Electrodes
References
Erscheint lt. Verlag | 4.8.2021 |
---|---|
Verlagsort | Weinheim |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 976 g |
Themenwelt | Naturwissenschaften ► Chemie |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Chemie • Chemistry • Components & Devices • Electrical & Electronics Engineering • Electronic materials • Elektrode • Elektronische Materialien • Elektrotechnik u. Elektronik • Komponenten u. Bauelemente • Materials Science • Materialwissenschaften • MEMS • Nanomaterial • Nanomaterialien • nanomaterials • Nanostrukturiertes Material • Nanotechnologie • nanotechnology • Physical Chemistry • Physikalische Chemie |
ISBN-10 | 3-527-33271-5 / 3527332715 |
ISBN-13 | 978-3-527-33271-7 / 9783527332717 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich