Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Combustion -  Irvin Glassman,  Nick G. Glumac,  Richard A. Yetter

Combustion (eBook)

eBook Download: PDF | EPUB
2014 | 5. Auflage
774 Seiten
Elsevier Science (Verlag)
978-0-12-411555-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
90,95 inkl. MwSt
(CHF 88,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Throughout its previous four editions, Combustion has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-including power generation in internal combustion automobile engines and gas turbine engines. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions, make this a crucial area of engineering. - New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all interrelated and discussed by considering scaling issues (e.g., length and time scales) - New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms - Expanded coverage of turbulent reactive flows to better illustrate real-world applications - Important new sections on stabilization of diffusion flames-for the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization

Dr. Irvin Glassman received both his undergraduate and graduate degrees in Chemical Engineering from The Johns Hopkins University. In 1950 he joined Princeton University, and is currently Robert H. Goddard Professor of Mechanical and Aerospace Engineering. He has also been American Cyanamid Professor of Envirionmental Sciences and Director of Princeton's Center for Energy and Evironmental Studies. For 15years Dr. Glassman represented the United States as a member (and former chairman) of the Propulsion and Energetics Panel of AGARD/NATO. He has been a member of numerous committees, task forces, and research teams, and is currently a member of The National Academy of Engineering and many other professional and honorary societies. Dr. Glassman is listed in Who's Who in America, Who's Who in the World, Outstanding Educators of America, and American Men of Science.
Throughout its previous four editions, Combustion has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications including power generation in internal combustion automobile engines and gas turbine engines. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions, make this a crucial area of engineering. - New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion all interrelated and discussed by considering scaling issues (e.g., length and time scales)- New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms- Expanded coverage of turbulent reactive flows to better illustrate real-world applications- Important new sections on stabilization of diffusion flames for the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization

Front Cover 1
Combustion 4
Copyright 5
Dedication 6
Dedication 8
Contents 10
Preface 16
Chapter 1 - Chemical thermodynamics and flame temperatures 18
1.1 INTRODUCTION 18
1.2 HEATS OF REACTION AND FORMATION 18
1.3 FREE ENERGY AND THE EQUILIBRIUM CONSTANTS 25
1.4 FLAME TEMPERATURE CALCULATIONS 33
1.5 SUB AND SUPERSONIC COMBUSTION THERMODYNAMICS 48
PROBLEMS 51
REFERENCES 56
Chapter 2 - Chemical kinetics 58
2.1 INTRODUCTION 58
2.2 RATES OF REACTIONS AND THEIR TEMPERATURE DEPENDENCE 58
2.3 SIMULTANEOUS INTERDEPENDENT REACTIONS 67
2.4 CHAIN REACTIONS 68
2.5 PSEUDO-FIRST-ORDER REACTIONS AND THE “FALLOFF” RANGE 71
2.6 THE PARTIAL EQUILIBRIUM ASSUMPTION 74
2.7 PRESSURE EFFECT IN FRACTIONAL CONVERSION 75
2.8 CHEMICAL KINETICS OF LARGE REACTION MECHANISMS 76
PROBLEMS 82
REFERENCES 86
Chapter 3 - Explosive and general oxidative characteristics of fuels 88
3.1 INTRODUCTION 88
3.2 CHAIN BRANCHING REACTIONS AND CRITERIA FOR EXPLOSION 88
3.3 EXPLOSION LIMITS AND OXIDATION CHARACTERISTICS OF HYDROGEN 95
3.4 EXPLOSION LIMITS AND OXIDATION CHARACTERISTICS OF CARBON MONOXIDE 103
3.5 EXPLOSION LIMITS AND OXIDATION CHARACTERISTICS OF HYDROCARBONS 108
3.6 THE OXIDATION OF ALDEHYDES 122
3.7 THE OXIDATION OF METHANE 123
3.8 THE OXIDATION OF HIGHER-ORDER HYDROCARBONS 128
PROBLEMS 158
REFERENCES 160
Chapter 4 - Flame phenomena in premixed combustible gases 164
4.1 INTRODUCTION 164
4.2 LAMINAR FLAME STRUCTURE 168
4.3 LAMINAR FLAME SPEED 170
4.4 STABILITY LIMITS OF LAMINAR FLAMES 206
4.5 FLAME PROGAGATION THROUGH STRATIFIED COMBUSTIBLE MIXTURES 225
4.6 TURBULENT REACTING FLOWS AND TURBULENT FLAMES 227
4.7 STIRRED REACTOR THEORY 248
4.8 FLAME STABILIZATION IN HIGH-VELOCITY STREAMS 252
4.9 COMBUSTION IN SMALL VOLUMES 262
PROBLEMS 265
REFERENCES 268
Chapter 5 - Detonation 272
5.1 INTRODUCTION 272
5.2 DETONATION PHENOMENA 275
5.3 HUGONIOT RELATIONS AND THE HYDRODYNAMIC THEORY OF DETONATIONS 276
5.4 COMPARISON OF DETONATION VELOCITY CALCULATIONS WITH EXPERIMENTAL RESULTS 294
5.5 THE ZND STRUCTURE OF DETONATION WAVES 301
5.6 THE STRUCTURE OF THE CELLULAR DETONATION FRONT AND OTHER DETONATION PHENOMENA PARAMETERS 305
5.7 DETONATIONS IN NONGASEOUS MEDIA 313
PROBLEMS 314
REFERENCES 315
Chapter 6 - Diffusion flames 318
6.1 INTRODUCTION 318
6.2 GASEOUS FUEL JETS 318
6.3 BURNING OF CONDENSED PHASES 339
6.4 BURNING OF DROPLET CLOUDS 367
6.5 BURNING IN CONVECTIVE ATMOSPHERES 368
PROBLEMS 376
REFERENCES 378
Chapter 7 - Ignition 380
7.1 CONCEPTS 380
7.2 CHAIN SPONTANEOUS IGNITION 383
7.3 THERMAL SPONTANEOUS IGNITION 385
7.4 FORCED IGNITION 395
7.5 OTHER IGNITION CONCEPTS 402
PROBLEMS 407
REFERENCES 408
Chapter 8 - Environmental combustion considerations 410
8.1 INTRODUCTION 410
8.2 THE NATURE OF PHOTOCHEMICAL SMOG 411
8.3 FORMATION AND REDUCTION OF NITROGEN OXIDES 417
8.4 SOX EMISSIONS 441
8.5 PARTICULATE FORMATION 455
8.6 STRATOSPHERIC OZONE 483
PROBLEMS 488
REFERENCES 489
Chapter 9 - Combustion of nonvolatile fuels 494
9.1 CARBON CHAR, SOOT, AND METAL COMBUSTION 494
9.2 METAL COMBUSTION THERMODYNAMICS 495
9.3 DIFFUSIONAL KINETICS 518
9.4 DIFFUSION-CONTROLLED BURNING RATE 520
9.5 PRACTICAL CARBONACEOUS FUELS (C. R. SHADDIX) 531
9.6 SOOT OXIDATION (C. R. SHADDIX) 544
9.7 CATALYTIC COMBUSTION 547
PROBLEMS 551
REFERENCES 551
Appendixes 554
CONTENTS 554
Appendix A: Thermochemical data and conversion factors 556
Appendix B: Adiabatic flame temperatures of hydrocarbons 668
Appendix C: Specific reaction rate constants 672
Appendix D: Bond dissociation energies of hydrocarbons 698
Appendix E: Flammability limits in air 706
Appendix F: Laminar flame speeds 714
Appendix G: Spontaneous ignition temperature data 722
Appendix H: Minimum spark ignition energies and quenching distances 748
Appendix I: Programs for combustion kinetics 752
I.1 THERMOCHEMICAL PARAMETERS 752
I.2 KINETIC PARAMETERS 752
I.3 TRANSPORT PARAMETERS 753
I.4 REACTION MECHANISMS 753
I.5 THERMODYNAMIC EQUILIBRIUM 755
I.6 TEMPORAL KINETICS (STATIC AND FLOW REACTORS) 757
I.7 STIRRED REACTORS 758
I.8 SHOCK TUBES 759
I.9 PREMIXED FLAMES 759
I.10 DIFFUSION FLAMES 760
I.11 BOUNDARY LAYER FLOW 761
I.12 DETONATIONS 761
I.13 MODEL ANALYSIS AND MECHANISM REDUCTION 761
Index 764

References


1. Kasper E, Herzog H-J. Thin Solid Films. 1977;44:357.

2. Bean JC, Feldman LC, Fiory AT, Nakahara S, Robinson IK. J. Vac. Sci. Technol. 1984;A2:436.

3. Smith C, Welbourn AD. Proc. Bipolar Circuits and Technology Meeting. New York: IEEE; 1987.57–60.

4. Mertens R, Nijs J, Symons J, Baert K, Ghannam M. In: Proc. Bipolar Circuits and Technology Meeting. New York: IEEE; 1987:54–56.

5. Iyer SS, Patton GL, Delage SS, Tiwari S, Stork JMC. In: 1987 International Election Devices Meeting. New York: IEEE; 1987:874–886.

6. Iyer SS, Patton GL, Delage SL, Tiwari S, Stork JMC. Proc. 2nd Int’l. Symp. on Silicon MBH. In: Bean JC, Schowalter LJ, eds. Pennington, NJ: Electrochemical Society; 1988:114–125.

7. Patton GL, Iyer SS, Delage SL, Tiwari S, Stork JMC. 165–167. IEEE Electron Device Letters. 1988;EDL-9.

8. Temkin H, Bean JC, Antreasyan A, Leibenguth R. Appl. Phys. Lett. 1988;52:1089–1091.

9. Tatsumi T, Hirayama H, Aizaki N. Appl. Phys. Lett. 1988;52:895–897.

10. Xu D-X, Shen G-D, Willander M, Ni W-X, Hansson GV. Appl. Phys. Lett. 1988;52:2239–2241.

11. Patton GL, Harame DL, Stork JMC, Meyerson BS, Scilla GJ, Ganin E. IEEE Electron Device Letters. 1989;EDL-10:534–536.

12. King CA, Hoyt JL, Gronet CM, Gibbons JF, Scott MP, Turner J. IEEE Electron Device Letters. 1989;EDL-10:52–54.

13. Bean JC. Proc. IEEE. 1992;80:571–587.

14. Germanium-Silicon Strained Layers and Heterostructures. In: Jain SC, ed. Advances in Electronics and Electron Physics. Academic Press; . 1994;Supplement 24.

15. Properties of Strained and Relaxed Silicon Germanium. In: Kasper E, ed. EMIS Data Reviews. INSPEC; . 1995;Series No. 12.

16. Matthews JW, Blakeslee AE. J. Cryst. Growth. 1974;27:118.

17. Robbins DJ, Canham LT, Barnett SJ, Pitt AD, Caicott P, Appl J. Phys. 1992;71:1407–1414.

18. Lang DV, People R, Bean JC, Sergent AM. Appl. Phys. Lett. 1985;47:1333–1335.

19. Braunstein R, Moore AR, Herman F. Phys. Rev. 1958;109:695.

20. Houghton DC, Appl J. Phys. 1991;70:2136–2151.

21. Widmer H. Appl. Phys. Lett. 1964;5:108.

22. Kasper E, Kibbel H, Schäffler F, Electrocliem J. Soc. 1989;136:1154–1158.

23. Wright S, Kroemer H. Appl. Phys. Lett. 1980;36:210.

24. Tabe M. Jpn. J. Appl. Phys. 1982;21:534.

25. Henderson RC. J. Electrochem. Soc. 1972;119:772.

26. Bean JC, Becker GE, Petroff PM, Seidel TE. J. Appl. Phys. 1977;48:907.

27. Kern W, Puotincn DA. RCA Review. 1970;31:187.

28. Blake J, Gelpely JC, Moquin JF, Schlueter J, Capodilupo R. In: Wilson SA, Powell R, Davies DW, eds. Proc. Sym. On Rapid Thermal Processing of Electronic Materials. Pittsburgh, PA: Materials Research Society; 1987:265–272.

29. Ishizaka A, Shiraki Y. J. Elecrrochem. Soc. 1986;133:666.

30. Fenner DB, Biegelsen DK, Bringans RD, Appl J. Phys. 1989;66:419–424.

31. Henderson RC, Marcus RB, Polito WJ. J. Appl. Phys. 1971;42:1208.

32. Eaglesham DJ, Higashi GS, Cerullo M. Appl. Phys. Lett. 1991;59:685–687.

33. Meyerson BS, Himpsel FJ, LeGoucs FK, Wang PJ. In: Proc. 2nd Int’l. Conf. on Elec. Maters. Pittsburgh, PA: Materials Research Society; 1990:469–475.

34. Robbins DJ, et al. Thin Solid Films. 1989;183:299–306.

35. Allen FG, Buck TM, Law JT. J. Appl. Phys. 1960;31:979.

36. Iyer SS, Delage SL, Scilla GJ. Appl. Phys. Lett. 1988;52:486–488.

37. Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R. Surf. Sci. 1992;267:79–82.

38. Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R. Surf. Sci. 1992;267:79–82.

39. Zahn PC, De Kruif RCM. Appl. Surf. Sci. 1993;70/71:73–78.

40. Sakamoto K, Kyoya K, Miki K, Matsuhata H, Sakamoto T. Jpn. J. Appl. Phys. Part 2. Letters 32. 1993;L204–206.

41. Dondl W, Lutjering G, Wegscheider W, Wilhelm J, Schorer R, Abstreiter G, Cryst J. Growth. 1993;127:440–442.

42. Copel M, Reuter MC, Horn van Hoegen M, Tromp RM. Phys. Rev. 1992;B42:11682–11689.

43. Fukatasu S, Fujita K, Yaguchi H, Shiraki Y, Ito R. In: Bean JC, Iyer SS, Wang KL, eds. Pittsburgh, PA: Materials Research Society; 1991:217–222. Symposium on Silicon MBE..

44. Becker GE, Bean JC. J. Appl. Phys. 1977;48:3395.

45. Ostrom RM, Allen FG. Appl. Phys. Lett. 1986;48:221–223.

46. Lin TL, Fathauer RW, Grunthaner PJ. 31–35. Thin Solid films. 1990;184.

47. Tuppen CG, Prior KA, Gibbings CJ, Houghton DC, Jackman TE, Appl J. Phys. 1988;64:2751–2754.

48. Kubiak RAA, Leong WY, Parker EHC. In: Bean JC, Iyer SS, Kasper E, Shiraki Y, eds. Proc. 1st Int’I. Symp. on Silicon MBE. Pennington, NJ: Electrochemical Society; 1985:169–178.

49. Parry CP, Newstead SM, Barlow RD, Augustus P, Kubiak RAA, Dowsett MG, Shall TE, Parker EHC. Appl. Phys. Lett. 1991;58:481–483.

50. Lin TL, George T, Jones EW, Ksendzov A, Huberman MC. Appl. Phys. Lett. 1992;60:380–382.

51. Jorke H, Kibbel H. Appl. Phys. Lett. 1990;57:1763–1765.

52. Zeindl HP, Hammerl E, Kiunke W, Eisele I. J. Electron Mater. 1990;19:1119–1122.

53. Headrick RL, Weir BE, Levi AFJ, Eaglesham DJ, Feldman LC. Appl. Phys. Lett. 1990;57:2779–2781.

54. Metzger RA, Allen FG. J. Appl. Phys. 1984;55:931.

55. Markert LC, Greene JE, Ni W-X, Hansson GV, Sundgren J-E. Thin Solid Films. 1991;206:59–63.

56. Gossman H-J, Schubcr EF, Eaglesham DJ, Ceruilo M. Appl. Phys. Lett. 1990;57:2440–2442.

57. Ota Y, Electrochem J. Soc. 1979;126:1761–1765.

58. Jorke H, Herzog J-J, Kibbel H. Appl. Phys. Lett. 1985;47:511–513.

59. Kubiak RAA, Leong WY, Parker EHC. Appl Phys. Lett. 1985;46:565–567.

60. Alerhand OL, Berker AN, Joannopoulos JD, Vanderbilt D, Hamers RJ, Demuth JE. Phys. Rev. Lett. 1990;64:2406–2409.

61. Chadi DJ. Phys. Rev. Lett. 1987;59:1691–1694.

62. Unpublished image from Brian Swartzentruber, laboratory of Max Lagally, Univ. Wisconsin.

63. Elswijk HB, Hoeven AJ, van Loenen EJ, Dijkkamp D. J. Vac. Sci. Technol. 1991;B9:451–456.

64. Hamers RJ, Köhler UK, Demuth JE. Ultramicroscopy. 1989;31:10–19.

65. Mo Y-W, Lagally MG. Surf. Sci. 1991;248:313–319.

66. Jorke H, Herzog H-J, Kibbel H. Phys. Rev. and references therein. 1989;B40:2005–2008.

67. Eaglesham DJ, Gossman H-J, Ceruilo M. Phys. Rev. Lett. 1990;65:1227–1230.

68. Eaglesham DJ, Appl J. Phys. 1995;77:3597–3617.

69. Eaglesham DJ, Unterwald FC, Luftman H, Adams DP, Yalisove SM, Appl J. Phys. 1993;74:6615–6618.

70. Streit D, Metzger RA, Allen FG. Appl. Phys. Lett. 1984;44:235–236.

71. Pidduck AJ, Robbins DJ, Cullis AG, Leong WY, Pitt AM. Thin Solid Films. 1992;222:78–84.

72. Spencer BJ, Voorhees PW, Davis SH. Phys. Rev. Lett. 1991;67:3696–3699.

73. Srolovitz D. Acta Met. 1989;37:621–625.

74. Copel M, Tromp RM. Appl. Phys. Lett. 1991;58:2646–2650.

75. Cullis AG, Robbins DJ, Barnett SJ, Pidduck AJ, Vac J. Sci. Technol. 1994;A12:1924–1931.

76. Miller KJ, Grieco MJ. J. Electrochem. Soc. 1962;109:70.

77. Bean JC, Butcher P. In: Bean JC, Iyer SS, Kasper E, Shiraki Y, eds. Pennington, NJ: Electrochemical Society; 1985:427–435. Proc. 1st Int’l. Symp. Si MBE..

78. Hirayama H, Tatsumi T, Ogura A, Aizaki N. Appl. Phys. Lett. 1987;51:2213–2215.

79. Hirayama H, Tatsumi T, Aizaki N. Appl. Phys. Lett. 1988;52:1484–1486.

80. Hirayama H, Hiroi M, Koyama K, Tatsumi T. Appl. Phys. Lett. 1990;56:2645 2487.

81. Suemitsu M, Hirose F, Miyamoto N, Cryst J. Growth. 1991;107:1015–1020.

82. Bramblett TR, Lu Q, Lee N-E, Taylor N, Hasan M-A, Greene JE, Appl J. Phys. 1995;77:1504–1513.

83. Li SH, Bhattacharaya PK, Malik R,...

PDFPDF (Adobe DRM)
Größe: 16,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 42,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 53,65
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 58,55