Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques- Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth- Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology- Describes atomic level epitaxial deposition and other low temperature growth techniques- Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials- Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials
List of Contributors
Hiroshi Amano, Department of Electrical Engineering and Computer Science, Akasaki Research Center, Nagoya University, Nagoya, Japan
Yamina André
Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France
CNRS, UMR 6602, Aubière, France
Hajime Asahi, The Institute of Scientific and Industrial Research, Osaka University, MIHOGAKA, IBARAKI, Osaka, Japan
John E. Ayers, Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT, USA
Michael J. Aziz, Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA
Bhavtosh Bansal, Dept. of Physical Sciences, Indian Institute of Science Education and Research Kolkata, India
Arnab Bhattacharya, Dept. of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India
Robert M. Biefeld, Sandia National Laboratories, Albuquerque, NM, USA
A.A. Bol, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
April S. Brown, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
Robert Cadoret
Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France
CNRS, UMR 6602, Aubière, France
Jeffrey G. Cederberg, Sandia National Laboratories, Albuquerque, NM, USA
Xiaogang Chen, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA
Enrique D. Cobas, Materials Science and Technology Division, U.S. Naval Research Laboratory, SW Washington, DC, USA
James J. Coleman, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA
Armin Dadgar, Institute of Experimental Physics, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
Paul G. Evans, Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI, USA
Roberto Fornari, Department of Physics and Earth Sciences, University of Parma, Parma, Italy
Hiroshi Fujioka, Institute of Industrial Science, The University of Tokyo
D. Kurt Gaskill, U.S. Naval Research Laboratory, Washington, DC, USA
Evelyne Gil
Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France
CNRS, UMR 6602, Aubière, France
Mark S. Goorsky, UCLA, HSSEAS School of Engineering & Applied Sciences, Department of Materials Science and Engineering, Los Angeles, CA, USA
Brett C. Johnson, School of Physics, University of Melbourne, Victoria, Australia
W.M.M. Kessels, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
Jeong Dong Kim, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA
Tsunenobu Kimoto, Department of Electronic Science and Engineering, Kyoto University, Kyoto, Japan
H.C.M. Knoops, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
G. Koblmüller
Materials Department, University of California, Santa Barbara, CA, USA
Walter Schottky Institut and Physik Department, Technische Universität München, Garching, Germany
Daniel D. Koleske, Sandia National Laboratories, Albuquerque, NM, USA
Alois Krost, Institute of Experimental Physics, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
Thomas F. Kuech, Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
J.R. Lang
Materials Department, University of California, Santa Barbara, CA, USA
Electrical Engineering Department, Yale University, New Haven, CT, USA
Hongdong Li, State Key Laboratory of Superhard Materials, Jilin University, Changchun, Jilin, China
Xiuling Li, Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL, USA
Maria Losurdo, National Council of Research, Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP, via Orabona 4, 70126 Bari, Italy
Fumihiro Matsukura
WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
Center for Spintronics Integrated Systems, Tohoku University, Sendai, Japan
Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
Michael G. Mauk, College of Engineering, Drexel University, Philadelphia, PA, USA
Jeffrey C. McCallum, School of Physics, University of Melbourne, Victoria, Australia
Kathleen M. McCreary, NRC Postdoctoral Fellow Residing at U.S. Naval Research Laboratory, SW Washington, DC, USA
Xin Miao, Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL, USA
Osamu Nakatsuka, Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
Nathan Newman, Materials Program, Arizona State University, Tempe, AZ, USA
Tatau Nishinaga, The University of Tokyo, Japan
Hideo Ohno
WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
Center for Spintronics Integrated Systems, Tohoku University, Sendai, Japan
Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
S.E. Potts, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
Aaron J. Ptak, National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO, USA
Joan M. Redwing, Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, PA, USA
Zachary R. Robinson, ASEE Postdoctoral Fellow Residing at U.S. Naval Research Laboratory, SW Washington, DC, USA
Scott W. Schmucker, NRC Postdoctoral Fellow Residing at U.S. Naval Research Laboratory, SW Washington, DC, USA
Clemens Simbrunner, Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Upper Austria, Austria
Helmut Sitter, Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Upper Austria, Austria
Marek Skowronski, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
Josef W. Spalenka, Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI, USA
J.S. Speck, Materials Department, University of California, Santa Barbara, CA, USA
Wolfgang Stolz, Material Sciences Center and Faculty of Physics, Philipps-Universität Marburg, Marburg, Germany
E. Suhir, ERS Co., Los Altos, CA, USA
Roman Talalaev, STR Group – Soft-Impact Ltd., St. Petersburg, Russia
Hidekazu Tanaka, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
Agnès Trassoudaine
Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France
CNRS, UMR 6602, Aubière, France
Clermont Université, Université d'Auvergne, Institut Pascal, Clermont-Ferrand, France
Mahmoud Vahidi, Materials Program, Arizona State...
Erscheint lt. Verlag | 2.11.2014 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Naturwissenschaften ► Geowissenschaften ► Mineralogie / Paläontologie | |
Technik | |
ISBN-10 | 0-444-63305-7 / 0444633057 |
ISBN-13 | 978-0-444-63305-7 / 9780444633057 |
Haben Sie eine Frage zum Produkt? |
Größe: 106,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 70,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich