Handbook of Flotation Reagents: Chemistry, Theory and Practice is a condensed form of the fundamental knowledge of chemical reagents commonly used in flotation and is addressed to the researchers and plant metallurgists who employ these reagents. This book consists of three distinct parts: part 1 provides detailed description of the chemistry used in mineral processing industry; part 2 describes theoretical aspects of the action of flotation reagents, while part 3 provides information on the use of reagents in over 100 operating plants treating Cu, Cu/Zn, Cu/Pb, Zn, Pb/Zn/Ag, Cu/Ni and Ni ores. - Looks at the theoretical aspects of flotation reagents- Examines the practical aspects of using chemical reagents in operating plants- Provides guidelines for researchers and engineers involved in process design and development
Front Cover 1
Handbook of Flotation Reagents: Chemistry, Theory and Practice 4
Copyright 5
Contents 6
Introduction 12
Chapter 26 - Flotation of Phosphate Ore 14
26.1 Introduction 14
26.2 Phosphate deposits and its origin 15
26.3 Flotation beneficiation of different phosphate ore types 15
26.4 Beneficiation of high iron and mixed iron, titanium ores 22
26.5 Plant practice in beneficiation of phosphate ores 26
References 31
Chapter 27 - Beneficiation of Beryllium Ores 34
27.1 Introduction 34
27.2 Ore and minerals of beryllium 34
27.3 Beneficiation of beryllium containing ores 37
References 53
Chapter 28 - Beneficiation of Lithium Ores 54
28.1 Introduction 54
28.2 Lithium ores and minerals 55
28.3 General overview of beneficiation of lithium ore 57
28.4 Flotation properties of different lithium minerals 57
28.5 Plant practices in beneficiation of lithium bearing ores 61
28.6 Chemical analyses of the spodumene concentrate from major world producers 68
References 69
Chapter 29 - Beneficiation of Florite Ores 70
29.1 Introduction 70
29.2 Fluorite ore deposits 71
29.3 Research and development in beneficiation of fluorite ores 72
References 88
Chapter 30 - Wollastonite 90
30.1 Introduction 90
30.2 Wollastonite minerals and deposits 90
30.3 Beneficiation of wollastonite ore 91
30.4 Major producing countries 100
References 102
Chapter 31 - Beneficiation of Zircon Containing Ores 104
31.1 Introduction 104
31.2 Zircon minerals and deposits 105
31.3 Flotation development of zircon 105
31.4 Beneficiation of heavy mineral sand containing zircon 108
31.5 Beneficiation of eudialyte containing ores 114
31.6 Chemical composition for zircon grades 115
References 118
Chapter 32 - Beneficiation of Feldspar Ore 120
32.1 Introduction 120
32.2 Ore and minerals of feldspars 120
32.3 Flotation properties of feldspar minerals 121
32.4 Feldspar quartz separation without use of HF acid 122
32.5 Beneficiation practices of ores containing feldspar spodumene quartz and mica 125
32.6 Sequential flotation of Na–feldspar and K–feldspar 131
References 132
Chapter 33 - Beneficiation of Silica Sand 134
33.1 Introduction 134
33.2 Silica sand deposits 135
33.3 Beneficiation of silica sand 135
33.4 Chemical analyses of pure silica sand used for various applications 140
References 140
Chapter 34 - Beneficiation of Barite Ores 142
34.1 Introduction 142
34.2 Barite ore deposits 142
34.3 Beneficiation of barite ores 143
34.4 Research and development 148
34.5 Specification for commercial barite products 152
References 153
Chapter 35 - Beneficiation of Celestite Ores 156
35.1 Introduction 156
35.2 Celestite ore deposits 156
35.3 Beneficiation of celestite ore 157
35.4 Celestite uses and specifications 164
References 165
Chapter 36 - Beneficiation of Potash Ore 166
36.1 Introduction 166
36.2 Potash deposits and minerals 167
36.3 Beneficiation of potash-containing ores 167
36.4 Treatment of potash ore in the presence of insoluble slimes 170
36.5 Other potash ore processing methods 173
36.6 Commercial operation 173
References 175
Chapter 37 - Beneficiation of Graphite Ore 176
37.1 Introduction 176
37.2 Graphite deposits 176
37.3 Beneficiation of graphite ores 177
References 184
Chapter 38 - Beneficiation of Mica-Containing Ore 186
38.1 Introduction 186
38.2 Mica minerals and deposits 187
38.3 Research and development on flotation of mica minerals 187
38.4 Flotation of individual mica minerals biotite (HK)2(MgFe)2Al2(SiO4)3 188
38.5 Commercial beneficiation plants 190
38.6 Commercial mica 193
References 197
Chapter 39 - Beneficiation of Coal 198
39.1 Introduction 198
39.2 Coal genesis 198
39.3 Beneficiation of coal 200
References 211
Chapter 40 - Beneficiation of Pollucite Containing Ore 212
40.1 Introduction 212
40.2 Principal minerals of cesium 213
40.3 Cesium containing deposits 213
40.4 Beneficiation of pollucite 214
40.5 Concluding remarks 219
References 219
Chapter 41 - Beneficiation of Iron Ores 220
41.1 Introduction 220
41.2 Iron ore deposits and minerals 221
41.3 Physical beneficiation method 221
41.4 Flotation beneficiation method 222
41.5 Examples of commercial operation 229
References 234
Index 236
Beneficiation of Beryllium Ores
Abstract
Most of beryllium production comes from beryl and therefore flotation properties of beryl are examined in detail by various research organizations. Because beryl is found in the form of large crystals in various ore types, recovery of beryl from these ores is accomplished by sorting and or selective grinding due to the fact that the hardness of beryl is 7.5–8 (Mohs scale); during grinding, most of the gangue is ground finer than beryl and beryl is left in the coarse fraction, which is recovered by screening.
Keywords
Beryllium; Beryl minerals; Beryllium deposits; Beneficiation of beryl; Anionic cationic collectorBeryl acid flotation; Fatty acid oleic acid beryl flotation; Bertrandite phenacite flotation; Beryllium yttrium rare earth separation; Beryllium operating plants
Chapter Outline
27.2 Ore and minerals of beryllium 21
27.3 Beneficiation of beryllium containing ores 24
27.3.1 Beneficiation of beryl 24
27.3.2 Flotation of beryl = general overviews 24
27.3.3 Flotation of beryl from pegmatite ores 29
27.3.4 Flotation of bertrandite and phenacite 31
27.3.4.1 Flotation of bertrandite and phenacite from Mount Wheeler ore U.S 34
27.3.4.2 Flotation of phenacite from complex beryllium, yttrium and REO ore 36
References 40
27.1. Introduction
27.2. Ore and minerals of beryllium
Table 27.1
Beryl Minerals of Economic Value
Beryl | Al2 Be3 (Si6O18) | 11–14.3 | 2.6–2.9 | 7.5–8 | White, colorless greenish |
Xrizoberyl | Al2BeO4 | 19.8 | 3.5–3.8 | 8.5 | Yellow, yellow-blue, bluish |
Phenacite Gelvin | BeO2(SiO4) Mn8(BeSiO4)6.S2 | 45.5 11–14.2 | 3.0 3.3 | 7.5 6–6.6 | Colorless, brown yellowish Yellow, brown, green |
Getgelvin | Zn8(BSiO4)6.S2 | 11–14 | 3.66 | – | Reddish |
Danolit | Fe8(BeSiO4).S2 | 12.7–14.7 | 3.40 | 5.5–6 | Yellow, green |
Bertrandite | Be4(Si2O7)(OH)2 | 39.6–42.6 | 2.6 | 6 | White, colorless, yellowish |
Evklaz | Be2Al2Si2O(OH)2 | – | 3.1 | 7.5 | Greenish |
Table 27.2
Industrial Types of Beryllium Deposits
Block pegmatites muscovite-albite | Ore with muscovite, quartz mica with fine crystalline beryl | Beryl | Columbite, tantalite |
Mixed pegmatites muscovite-albite | Ore with muscovite, quartz mica with fine crystalline beryl | Alkaline beryl | Columbite, tantalite |
Mixed spodumene lepidolite-albite pegmatites | Spodumen-quartz albite ore with fine crystalline beryl. This ore type gave about 90% of all beryllium production | Alkaline beryl | Spodumene, columbite, tantalite, cassiterite, lepidolite |
Intermixed pegmatites and pneumatolites | Mica plagioclas and silica plagioclas lenses with beryllium; important but not abundant | Beryl (izumrud) xrizoberyl, phenacite | – |
Hydrothermal-Pneumatolytic |
Alumosilicates beryl containing altered granites | Muscovite-quartz ores with beryl; a potential industrial deposits | Beryl | Wolframite |
Beryl containing quartz-muscovite-topaz lenses | High-temperature formations of quartz lenses; important industrial deposits | Beryl (gelvin, bertrandite) | Wolframite, cassiterite, molybdenite |
In carbonatite matrix beryl containing skarns | Magnetite fluoride ores with xrizoberyl and gelvin–danalite; potentially important deposits | Xrizoberyl, gelvin, danalite, fenakite | Shelite |
Beryl containing metasomatic fluorite ores | Fluorite ores with phenakite and xrizoberyl; potentially important deposits | Phenakite xrizoberyl | Cassiterite |
27.3. Beneficiation of beryllium containing ores
27.3.1. Beneficiation of beryl
Erscheint lt. Verlag | 3.10.2014 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-08-093210-X / 008093210X |
ISBN-13 | 978-0-08-093210-1 / 9780080932101 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 11,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich