Advances in Bioinformatics and Computational Biology
Springer International Publishing (Verlag)
978-3-319-12417-9 (ISBN)
An Extensible Framework for Genomic and Metagenomic Analysis.- On the Multichromosomal Hultman Number.- Towards an Ensemble Learning Strategy for Metagenomic Gene Prediction.- FUNN-MG: A Metagenomic Systems Biology Computational Framework.- FluxMED: An Adaptable and Extensible Electronic Health Record System.- Influence of Sequence Length in Promoter Prediction Performance.- Evolution of Genes Neighborhood within Reconciled Phylogenies: An Ensemble Approach.- Dynamic Programming for Set Data Types.- Using Binary Decision Diagrams (BDDs) for Memory Optimization in Basic Local Alignment Search Tool (BLAST).- A Multi-Objective Evolutionary Algorithm for Improving Multiple Sequence Alignments.- BION2SEL: An Ontology-Based Approach for the Selection of Molecular Biology Databases.- Structural Comparative Analysis of Secreted NTPDase Models of Schistosoma mansoni and Homo sapiens.- Length and Symmetry on the Sorting by Weighted Inversions Problem.- Storage Policy for Genomic Data in Hybrid Federated Clouds.- Genome-Wide Identification of Non-coding RNAs in Komagataella pastoris str. GS115.- Multi-scale Simulation of T Helper Lymphocyte Differentiation.- Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework.- Quality Metrics for Benchmarking Sequences Comparison Tools.
Erscheint lt. Verlag | 1.10.2014 |
---|---|
Reihe/Serie | Lecture Notes in Bioinformatics | Lecture Notes in Computer Science |
Zusatzinfo | X, 156 p. 41 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 6 g |
Themenwelt | Informatik ► Weitere Themen ► Bioinformatik |
Naturwissenschaften ► Biologie | |
Schlagworte | Algorithm analysis and problem complexity • algorithms • Bioinformatics • classification • Computational Biology • database selection • Data Mining • Dynamic Programming • evolutionary algorithms • formal grammar • gene expressions • graph visualization • machine learning • molecular biology databases • predictive models • Support Vector Machine • systems biology |
ISBN-10 | 3-319-12417-X / 331912417X |
ISBN-13 | 978-3-319-12417-9 / 9783319124179 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich