Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Effect of Creep and other Time Related Factors on Plastics and Elastomers -  Laurence W. McKeen

Effect of Creep and other Time Related Factors on Plastics and Elastomers (eBook)

eBook Download: PDF | EPUB
2014 | 3. Auflage
506 Seiten
Elsevier Science (Verlag)
978-0-323-35407-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
290,00 inkl. MwSt
(CHF 279,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This reference guide brings together a wide range of critical data on the effect of creep and other long term effects on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data are supported by explanations of how to make use of the data in real world engineering contexts and provides the long-term properties data that designers need to create a product that will stand the test of time.This new edition represents a full update of the data, removing all obsolete data, adding new data, and updating the list of plastics manufacturers. Additional plastics have also been included for polyesters, polyamides and others where available, including polyolefins, elastomers and fluoropolymers. Entirely new sections on biodegradable polymers and thermosets have been added to the book.The level of data included - along with the large number of graphs and tables for easy comparison - saves readers the need to contact suppliers, and the selection guide has been fully updated, giving assistance on the questions which engineers should be asking when specifying materials for any given application. - Trustworthy, current data on creep, stress-strain and environmental stress cracking, enabling easier and more effective material selection and product design. - Includes expert guidance to help practitioners make best use of the data. - Entirely new sections added on sustainable and biodegradable polymers, and thermosets.

Larry McKeen has a Ph.D. in Chemistry from the University of Wisconsin and worked for DuPont Fluoroproducts from 1978-2014. As a Senior Research Associate (Chemist), he was responsible for new product development including application technology and product optimization for particular end-uses, and product testing. He retired from DuPont at the end of 2014 and is currently a consultant.
This reference guide brings together a wide range of critical data on the effect of creep and other long term effects on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data are supported by explanations of how to make use of the data in real world engineering contexts and provides the long-term properties data that designers need to create a product that will stand the test of time.This new edition represents a full update of the data, removing all obsolete data, adding new data, and updating the list of plastics manufacturers. Additional plastics have also been included for polyesters, polyamides and others where available, including polyolefins, elastomers and fluoropolymers. Entirely new sections on biodegradable polymers and thermosets have been added to the book.The level of data included - along with the large number of graphs and tables for easy comparison - saves readers the need to contact suppliers, and the selection guide has been fully updated, giving assistance on the questions which engineers should be asking when specifying materials for any given application. - Trustworthy, current data on creep, stress-strain and environmental stress cracking, enabling easier and more effective material selection and product design. - Includes expert guidance to help practitioners make best use of the data. - Entirely new sections added on sustainable and biodegradable polymers, and thermosets.

Front Cover 1
The Effect of Creep and Other Time Related Factors on Plastics and Elastomers 4
Copyright Page 5
Contents 6
Foreword 12
Acknowledgments 14
1 Introduction to Creep, Polymers, Plastics and Elastomers 16
1.1 Introduction 16
1.2 Types of Stress 16
1.2.1 Tensile and Compressive Stress 16
1.2.2 Shear Stress 16
1.2.3 Torsional Stress 16
1.2.4 Flexural or Bending Stress 17
1.2.5 Hoop Stress 18
1.3 Basic Concepts of Creep 19
1.3.1 Categories, Stages, or Regions of Creep 20
1.3.2 Measures of Creep 21
1.3.2.1 Stress, Strain, and Time 21
1.3.2.2 Creep Modulus 23
1.3.2.3 Creep Strength and Rupture Strength 25
1.3.2.4 Temperature Shift Factors 28
1.3.2.5 Compression Set 29
1.3.2.6 Environmental Stress Cracking 31
Single Cantilever Test 31
Three Point Bending Test 31
Tensile Creep Rupture Test 32
ESC Performance Expectations 33
1.3.2.7 Summary of Creep Standard Tests 34
1.4 Plastics and Polymers 35
1.4.1 Polymerization 36
1.4.1.1 Addition Polymerization 36
1.4.1.2 Condensation Polymerization 36
1.4.2 Copolymers 37
1.4.3 Linear, Branched, and Cross-Linked Polymers 37
1.4.4 Polarity 38
1.4.5 Unsaturation 39
1.4.6 Steric Hindrance 40
1.4.7 Isomers 40
1.4.7.1 Structural Isomers 40
1.4.7.2 Geometric Isomers 40
1.4.7.3 Stereoisomers: Syndiotactic, Isotactic, Atactic 41
1.4.8 Inter and Intra Molecular Attractions in Polymers 42
1.4.8.1 Hydrogen Bonding 42
1.4.8.2 Van der Waals Forces 42
1.4.8.3 Chain Entanglement 43
1.4.9 General Classifications 43
1.4.9.1 Molecular Weight 43
1.4.9.2 Thermosets Versus Thermoplastics 44
1.4.9.3 Crystalline Versus Amorphous 44
1.5 Plastic Compositions 45
1.5.1 Fillers, Reinforcement, and Composites 46
1.5.2 Combustion Modifiers, Fire, Flame Retardants, and Smoke Suppressants 47
1.5.3 Release Agents 47
1.5.4 Slip Additives/Internal Lubricants 47
1.5.5 Antiblock Additives 48
1.5.6 Catalysts 48
1.5.7 Impact Modifiers and Tougheners 48
1.5.8 UV/Radiation Stabilizers 49
1.5.9 Optical Brighteners 49
1.5.10 Plasticizers 49
1.5.11 Pigments, Extenders, Dyes, and Mica 50
1.5.11.1 Titanium Dioxide 50
1.5.11.2 Carbon Black 50
1.5.12 Coupling Agents 50
1.5.13 Thermal Stabilizers 50
1.5.14 Antistats 50
1.6 Mechanisms of Creep of Plastics 51
1.6.1 Linear Polymers 51
1.6.2 Branched or Cross-Linked Polymers 52
1.6.3 Reinforced Plastics 52
1.6.4 Additives 52
1.7 Poisson’s Ratio 52
1.8 Using Creep Data in Plastic Product Design 53
1.8.1 Pseudo Elastic Design Method 54
1.8.2 Finite Element Analysis 54
1.9 Summary 55
References 55
2 Styrenic Plastics 58
2.1 Polystyrene 58
2.2 Acrylonitrile Styrene Acrylate 58
2.3 Styrene Acrylonitrile 60
2.3.1 Styrolution® Luran® SAN Resins 70
2.3.2 SABIC Innovative Plastics Thermocomp* SAN grades 78
2.4 Acrylonitrile Butadiene Styrene 79
2.4.1 INEOS Lustran® ABS Resins 81
2.4.2 Toray Resin Company Toyolac® ABS Resins 83
2.4.3 SABIC Innovative Plastics Cycolac* ABS Resins 85
2.4.4 Styron Magnum™ ABS Resins 86
2.5 Methyl methacrylate acrylonitrile butadiene styrene 89
2.6 Styrene Maleic Anhydride 90
2.7 Styrenic Block Copolymers 91
2.8 Styrenic Blends and Alloys 94
2.8.1 Bayer MaterialScience AG Styrenic Blends and Alloys 96
2.8.2 Styrolution® Styrenic Blends and Alloys 105
2.8.3 SABIC Innovative Plastics Styrenic Blends and Alloys 109
References 110
3 Polyether Plastics 112
3.1 Polyoxymethylene (POM or Acetal Homopolymer) 112
3.2 Polyoxymethylene Copolymer (POM-Co or Acetal Copolymer) 112
3.2.1 Celanese Hostaform® and Celcon® POM-Co Resins 123
3.2.2 BASF Ultraform® POM-Co Resins 136
3.2.3 Mitsubishi Engineering-Plastics Corp. Iupital® POM-Co Resins 146
3.3 Modified Polyphenylene Ether/Polyphenylene Oxides 148
3.3.1 SABIC Innovative Plastics Noryl* Polyther Blends/Alloys Resins 149
3.3.2 Evonik Industries Vestoran® Polyther Blends/Alloys 153
References 154
4 Polyesters 156
4.1 Polycarbonate 156
4.1.1 SABIC Innovative Plastics Lexan® 101 PC Resins 158
4.1.2 Mitsubishi Engineering-Plastics Corp Novarex® and Iupilon® PC Resins 162
4.2 Polybutylene Terephthalate 166
4.2.1 Celanese Celanex® PBT Resins 171
4.2.2 DuPont Engineering Polymers Crastin® PBT Resins 173
4.2.3 Evonik Industries Vestodur® PBT Resins 178
4.2.4 BASF Ultradur® PBT Resins 186
4.2.5 Mitsubishi Engineering-Plastics Corporation Novaduran® PBT Resins 188
4.3 Polyethylene Terephthalate 194
4.3.1 Celanese Impet® PET Resins 195
4.3.2 DuPont Engineering Polymers Rynite® PET Resins 196
4.4 Liquid Crystalline Polymers 211
4.5 Polycyclohexylene-Dimethylene Terephthalate 216
4.6 Polyphthalate Carbonate 216
4.7 Polyester Blends and Alloys 216
4.7.1 SABIC Innovative Plastics Polyester Blend Resins SABIC Vandar® 221
4.7.2 DuPont Engineering Polymers Crastin® Polyester Alloys 225
References 226
5 Polyimides 228
5.1 Polyetherimide 228
5.2 Polyamide-Imide 228
5.3 Polyimide 243
5.3.1 Standard PIs 244
5.3.2 Thermoplastic PIs 245
5.4 Imide Polymer Blends 245
References 260
6 Polyamides (Nylons) 262
6.1 Nylon 6 (PA 6) 262
6.1.1 BASF Ultramid® B PA 6 Resins 264
6.1.2 SABIC Innovative Plastics PA 6 Resins 265
6.1.3 DuPont Engineering Polymers Zytel® and Minlon® PA 6 Resins 266
6.1.4 Toray Industries Amilan™ PA 6 Resins 268
6.1.5 EMS Grivory Grilon® PA 6 Resins 269
6.2 Nylon 11 (PA 11) 272
6.3 Nylon 12 (PA 12) 274
6.3.1 Evonik Vestamid® PA 12 Resins 274
6.3.2 EMS Grivory Grilamid® PA 12 Resins 283
6.4 Nylon 46 (PA 46) 284
6.5 Nylon 66 (PA 66) 286
6.5.1 DuPont Engineering Polymers Zytel® and Minlon® PA 66 (Nylon 66) Resins 286
6.5.2 BASF Ultramid® a PA 66 (Nylon 66) Resins 299
6.6 Nylon 610 (PA 610) 300
6.7 Nylon 612 (PA 612) 300
6.7.1 Evonik Vestamid® D PA 612 Resins 302
6.7.2 DuPont Engineering Polymers Zytel® PA 612 Resins 306
6.8 Nylon 6/66 307
6.9 Nylon Amorphous 307
6.9.1 Evonik Trogamid® Amorphous/Transparent Polyamide Resins 310
6.9.2 EMS Grivory Grilamid® Amorphous/Transparent Polyamide Resins 311
6.10 Polyarylamide 313
6.11 Polyphthalamide 315
6.11.1 Solvay Advanced Polymers Amodel® PPA Resins 317
6.11.2 EMS Grivory® PPA Resins 325
References 335
7 Polyolefins and Acrylics 336
7.1 Polyethylene 336
7.1.1 High Density Polyethylene 338
7.1.2 Ultrahigh Molecular Weight Polyethylene 349
7.2 Polypropylene 353
7.2.1 LyondellBasell Hostalen® Polypropylene (PP) Resins 354
7.2.2 SABIC Innovative Plastics Polypropylene (PP) resins 357
7.3 Polymethylpentene 360
7.4 Cyclic Olefin Copolymer 361
7.5 Rigid PVC 361
7.6 Polyacrylics 362
7.6.1 Lucite Industries Diakon™ Acrylic Resin 366
7.6.2 Cyro Industries Acrylite® Acrylic Resins 367
References 368
8 Thermoplastic Elastomers 370
8.1 Thermoplastic Polyurethane Elastomers 370
8.2 Thermoplastic Copolyester Elastomers 373
8.3 Thermoplastic Polyether Olefin Elastomers 381
8.4 Thermoplastic Polyether Block Amide Elastomers 381
References 387
9 Fluoropolymers 388
9.1 Polytetrafluoroethylene 388
9.1.1 DuPont Teflon® PTFE Resins 391
9.1.2 Asahi Glass Chemicals Fluon® PTFE 396
9.2 Ethylene Chlorotrifluoroethylene 400
9.3 Ethylene Tetrafluoroethylene 403
9.3.1 DuPont Tefzel® ETFE Resins 404
9.3.2 Asahi Glass Chemicals Fluon® ETFE Resin 405
9.4 Fluorinated Ethylene Propylene 407
9.5 Perfluoro Alkylvinylether (PFA/MFA) 413
9.5.1 PFA 413
9.5.1.1 DuPont Teflon® PFA Resin 414
9.5.1.2 Solvay Solexis Hyflon® PFA Resins 415
9.5.2 MFA 418
9.6 Polychlorotrifluoroethylene 420
9.7 Polyvinylidene Fluoride 420
9.7.1 Solvay Solexis Solef® PVDF Resins 422
9.7.2 Arkema Kynar® PVDF Resins 426
References 427
10 High-Temperature Polymers 428
10.1 Polyketones 428
10.1.1 Polyether Ether Ketones 428
10.1.1.1 Victrex PLC. Victrex® PEEK Resins 428
10.1.1.2 Solvay Advanced Polymers KetaSpire® PEEK Resins 433
10.1.2 Polyether Ketones 437
10.1.3 Polyether Ketone Ether Ketone Ketones 438
10.1.4 Polyaryl Ether Ketones 438
10.2 Polyethersulfone 449
10.2.1 BASF Ultrason® PES Resins 449
10.2.2 Solvay Advanced Polymers Veradel® PES Resins 455
10.2.3 Sumitomo Chemical Sumikaexcel® PES Resins 457
10.3 Polyphenylene Sulfide 458
10.3.1 Chevron Phillips Chemical Ryton® PPS Resin 459
10.3.2 Celanese Fortron® PPS Resins 463
10.4 Polysulfone 474
10.4.1 BASF Ultrason® S PSU Resins 475
10.4.2 Solvay Advanced Polymers Udel® PSU Resins 480
10.5 Polyphenylsulfone 483
10.5.1 Solvay Advanced Polymers Radel® R PPSU Resins 483
10.5.2 BASF Ultrason® P PPSU Resins 486
References 488
Appendix 1: Abbreviations 490
Appendix 2: Unit Conversion Tables 492
Pressure, Stress, Modulus 492
Strain 493
Index 494

2

Styrenic Plastics


This chapter on styrenic plastics covers a broad class of polymeric materials of which an important part is styrene. Chemical structures, manufacturers, and trade names along with typical end uses of the plastics are included besides extensive graphic creep data as a function of temperature and stress level. Plastics included in this section are acrylonitrile–butadiene–styrene copolymer, polystyrene, high-impact polystyrene, styrene–acrylonitrile copolymer, and styrene maleic anhydride.

Keywords


ABS; acrylonitrile–butadiene–styrene copolymer; acrylonitrile–styrene–acrylate; ASA; creep modulus; creep strain; isochronous stress–strain; MABS; polystyrene; recovery; SAN; SBC; stress relaxation; Styrene; styrene–acrylonitrile copolymer; styrene–butadiene copolymer; styrene maleic anhydride; tensile creep

This chapter on styrenic plastics covers a broad class of polymeric materials of which an important part is styrene. Styrene, also known as vinyl benzene, is an organic compound with the chemical formula C6H5CHCH2. Its structure is shown in Figure 2.1.


Figure 2.1 Chemical structure of styrene.

It is used as a monomer to make plastics such as polystyrene, acrylonitrile butadiene styrene (ABS), styrene acrylonitrile (SAN), and the other polymers in this chapter.

2.1 Polystyrene


Polystyrene is the simplest plastic based on styrene. Its structure is shown in Figure 2.2.


Figure 2.2 Chemical structure of polystyrene.

Pure solid polystyrene is a colorless, hard plastic with limited flexibility. Polystyrene can be transparent or can be made in various colors. It is economical and is used for producing plastic model assembly kits, plastic cutlery, CD “jewel” cases, and many other objects where a fairly rigid, economical plastic is desired.

Polystyrene’s most common use, however, is as expanded polystyrene (EPS). EPS is produced from a mixture of about 5–10% gaseous blowing agent (most commonly pentane or carbon dioxide) and 90–95% polystyrene by weight. The solid plastic beads are expanded into foam through the use of heat (usually steam). The heating is carried out in a large vessel holding 200–2000 L. An agitator is used to keep the beads from fusing together. The expanded beads are lighter than unexpanded beads so they are forced to the top of the vessel and removed. This expansion process lowers the density of the beads to 3% of their original value and yields a smooth-skinned, closed cell structure. Next, the preexpanded beads are usually “aged” for at least 24 h in mesh storage silos. This allows air to diffuse into the beads, cooling them and making them harder. These expanded beads are excellent for detailed molding. Extruded polystyrene (XPS), which is different from EPS, is commonly known by the trade name Styrofoam™. All these foams are not of interest in this book.

Three general forms of polystyrene are:

1. General purpose (PS or GPPS)

2. High impact (HIPS)

3. Syndiotactic (SPS or sPS).

One of the most important plastics is high-impact polystyrene, or HIPS. This is a styrene matrix that is imbedded with an impact modifier, which is basically a rubber-like polymer such as polybutadiene. This is shown in Figure 2.3.


Figure 2.3 The structure of HIPS.

Manufacturers and trade names: BASF polystyrene and polystyrol, Dow Chemical Trycite™, Styron Styron™.

Applications and uses:

General purpose: yogurt, cream, butter, meat trays, egg cartons, fruit and vegetable trays, as well as cakes, croissants, and cookies. medical and packaging/disposables, bakery packaging, and large and small appliances, medical and packaging/disposables, particularly where clarity is required.

High impact: refrigeration accessories, small appliances, electric lawn and garden equipment, toys, and remote controls.

Data for Styrolution® polystyrene plastics are found in Figures 2.42.17.


Figure 2.4 Isochronous stress–strain at 23°C of Styrolution® PS 143 E—medium strength, easy flowing general purpose grade polystyrene resin.

Figure 2.5 Creep modulus versus time at 23°C of Styrolution® PS 143 E—medium strength, easy flowing general purpose grade polystyrene resin.

Figure 2.6 Isochronous stress–strain at 23°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).

Figure 2.7 Isochronous stress–strain at 40°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).

Figure 2.8 Isochronous stress–strain at 60°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).

Figure 2.9 Creep modulus at 23°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).

Figure 2.10 Creep modulus at 40°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).

Figure 2.11 Creep modulus at 60°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).

Figure 2.12 Creep curves of Styrolution® PS 168N at 20°C—high-molecular-weight, heat-resistant polystyrene resin (PS) [1].

Figure 2.13 Creep rupture curves of Styrolution® PS 456F at various temperatures—heat-resistant, impact-resistant polystyrene resin (PS) [1].

Figure 2.14 Creep curves of high-impact Styrolution® polystyrene resins at 20°C [1].

Figure 2.15 Creep rupture curves of several general purpose Styrolution® PS polystyrene resins [1].

Figure 2.16 Creep rupture curves in olive oil/oleic acid (1:1 volume blend) as a function of melting point of Styrolution® PS HIPS resins [2].

Figure 2.17 Creep rupture curves in stress cracking testing by various agents of Styrolution® PS HIPS resins [2].

2.2 Acrylonitrile Styrene Acrylate


Acrylonitrile styrene acrylate (ASA) is the acronym for acrylate rubber-modified SAN copolymer. ASA is a terpolymer that can be produced by either a reaction process or by a graft process. ASA is usually made by introducing a grafted acrylic ester elastomer during the copolymerization of styrene and acrylonitrile, known as SAN. SAN is described later in this chapter. The finely divided elastomer powder is uniformly distributed in and grafted to the SAN molecular chains. The outstanding weatherability of ASA is due to the acrylic ester elastomer. ASA polymers are amorphous plastics, which have mechanical properties similar to those of the ABS resins described in Section 2.5. However, the ASA properties are far less affected by outdoor weathering.

ASA resins are available in natural, off-white, and a broad range of standard and custom-matched colors. ASA resins can be compounded with other polymers to make alloys and compounds that benefit from ASA’s weather resistance.

Manufacturers and trade names: BASF Luran® S.

Applications and uses: automotive components, electrical equipment subjected to high temperatures, parabolic reflectors, solar energy systems, movement sensors, surfboards, golf cars, lawn and garden equipment, sporting goods, automotive exterior parts, safety helmets, and building materials.

Data for Styrolution® ASA plastics are found in Figures 2.182.31.


Figure 2.18 Isochronous stress–strain at 23°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.19 Isochronous stress–strain at 40°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.20 Isochronous stress–strain at 60°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.21 Isochronous stress–strain at 80°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.22 Creep modulus versus time at 23°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.23 Creep modulus versus time at 40°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.24 Creep modulus versus time at 60°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.25 Creep modulus versus time at 80°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.

Figure 2.26 Isochronous stress–strain at 23°C of Styrolution® Luran® S 778T—general purpose, toughened, high heat grade ASA resin [3].

Figure 2.27 Isochronous stress–strain at...

Erscheint lt. Verlag 26.8.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Bauwesen
Technik Maschinenbau
ISBN-10 0-323-35407-6 / 0323354076
ISBN-13 978-0-323-35407-3 / 9780323354073
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 234,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 42,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95