Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Regulated Cell Death Part B -

Regulated Cell Death Part B (eBook)

Necroptotic, Autophagic and other Non-apoptotic Mechanisms
eBook Download: PDF | EPUB
2014 | 1. Auflage
352 Seiten
Elsevier Science (Verlag)
978-0-12-801619-0 (ISBN)
155,00 € (CHF 149,95)
Systemvoraussetzungen
154,78 € (CHF 149,95)
Systemvoraussetzungen
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Regulated Cell Death Part A & Part B of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in apoptosis focusing on the important areas of intrinsic pathway, extrinsic pathway, caspases, cellular assays and post-apoptotic effects and model organisms; as well as topics on necroptosis and screening approaches. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in biomineralization science - Regulated Cell Death Part A & Part B contains sections on such topics as apoptosis focusing on the important areas of intrinsic pathway, extrinsic pathway, caspases, cellular assays and post-apoptotic effects and model organisms; as well as topics on necroptosis and screening approaches
Regulated Cell Death Part A & Part B of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in apoptosis focusing on the important areas of intrinsic pathway, extrinsic pathway, caspases, cellular assays and post-apoptotic effects and model organisms; as well as topics on necroptosis and screening approaches. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field- Covers research methods in biomineralization science- Regulated Cell Death Part A & Part B contains sections on such topics as apoptosis focusing on the important areas of intrinsic pathway, extrinsic pathway, caspases, cellular assays and post-apoptotic effects and model organisms; as well as topics on necroptosis and screening approaches

Front Cover 1
Regulated Cell Death Part B: Necroptotic, Autophagic and other Non-apoptotic Mechanisms 4
Copyright 5
Contents 6
Contributors 10
Preface 14
Chapter One: Assays for Necroptosis and Activity of RIP Kinases 16
1. Introduction 17
1.1. Distinguishing features of necroptotic cell death 17
1.2. Pathways and mediators of necroptosis 18
2. Cellular Models of Necroptosis 20
2.1. Cell types (Table 1.1) 20
2.2. Inducers of necroptosis 22
2.3. Inhibitors of necroptosis 23
3. Measurement of Necroptotic Cell Death 24
3.1. Analysis of viability of FADD-deficient Jurkat cells treated with TNFa using CellTiter-Glo assay (Fig. 1.1) 24
3.2. Determination of specific cell death using SYTOX Green assay (Fig. 1.2) 25
3.3. Annexin V/PI assay (Fig. 1.3) 26
3.4. Analysis of ROS increase (Fig. 1.4) 27
3.5. Mitochondrial membrane depolarization (Fig. 1.3) 29
3.6. Analysis of TNFa gene expression changes by qPCR (Fig. 1.5) 29
4. Recapitulation of RIP1 Kinase Expression in RIP1-Deficient Jurkat Cells 31
4.1. Transient transfection (Fig. 1.6) 31
4.2. Generation of stable-inducible cell lines (Fig. 1.7) 32
5. Analysis of Necrosome Complex Formation 33
5.1. Immunoprecipitation of necrosome complex (Fig. 1.8) 33
5.2. Immunoprecipitation of TNFR1 complex 35
5.3. Assessment of necrosome formation by fluorescence microscopy 36
6. Endogenous RIPK Autophosphorylation Assays (Fig. 1.9) 36
7. Analysis of Recombinant RIPK1 Kinase Activity and Inhibition by Necrostatins 38
7.1. Expression and purification of recombinant RIP1 and RIP3 38
7.2. Kinase-Glo assay (Fig. 1.10) 38
7.3. HTRF KinEASE assay (Fig. 1.11) 40
7.4. Fluorescence polarization assay (Fig. 1.12) 41
7.5. Thermomelt assay (Fig. 1.13) 42
8. Conclusions 43
Acknowledgments 44
References 44
Chapter Two: IAP Family of Cell Death and Signaling Regulators 50
1. Identification of IAPs, Structure, and Domain Function 51
1.1. Discovery 51
1.2. Domain structure—BIRs 53
1.3. Domain structure—RING and UBA 54
1.4. Domain structure—NACHT and enigmatic CARD 54
2. IAP Proteins and Cell Death Pathways 54
2.1. XIAP—Inhibitor of the intrinsic Bcl-2 blockable pathway 54
2.2. XIAP—Caspase inhibitor 55
2.3. Inhibition of cell death by c-IAP1 and c-IAP2 58
2.4. IAP proteins and ubiquitin 61
2.5. Regulation of signaling pathways by IAP proteins 65
2.6. Targeting IAP proteins 67
References 70
Chapter Three: Activation of the NLRP3 Inflammasome by Proteins That Signal for Necroptosis 82
1. Introduction 83
2. Altered Expression or Function of Enzymes That Control Induction of Necroptosis Results in Altered Generation of IL-1ß... 84
2.1. Generation of mouse bone marrow-derived DCs 85
2.2. Use of transgenic mice to obtain DCs deficient in caspase-8 or RIPK3 86
2.3. Knockdown of proteins signaling for necroptosis in DCs 87
2.4. Induction of cytokines in DCs by agents inducing and activating the NLRP3 inflammasome 87
2.5. Quantification of the induced cytokines 87
3. Signaling Proteins Controlling Necroptosis Affect Assembly of the NLRP3 Inflammasome 87
3.1. Assessment of the proteolytic processing of caspase-1 and of the IL-1ß precursor protein 88
3.2. Confirmation of the requirement for NLRP3 and ASC for IL-1ß generation 88
3.3. Assessment of the assembly of the inflammasome by measuring the detergent solubility of the inflammasome components 89
3.4. Assessment of the assembly of the inflammasome by the use of cross-linking reagents 89
4. Does the Similarity Between the Regulation of Necroptosis and of Assembly of the NLRP3 Inflammasome Reflect Activation... 90
4.1. Viability tests applied to DCs 91
4.2. Assessment of ROS generation in the DCs 91
4.3. Assessment of the release of inflammasome-activating agents by the DCs 92
4.3.1. ATP release by the DCs 92
4.3.2. Assessment of permeability changes in the DCs as a marker for exposure to ATP 92
4.3.3. Assessment of the ability of DC lysates to activate IL-1ß generation 92
4.3.4. Coculturing of wild-type and caspase-8-deficient cells 93
5. Concluding Remarks 93
Acknowledgments 94
References 94
Chapter Four: Characterization of the Ripoptosome and Its Components: Implications for Anti-inflammatory and Cancer Therapy 98
1. Introduction 99
2. The Ripoptosome: Cellular Model Systems to Study Its Formation 102
2.1. Induction of ripoptosome formation by IAP antagonists (SMAC mimetics) 103
2.1.1. Experimental procedure 103
2.2. Induction of ripoptosome formation via RIP1 over expression 104
2.2.1. Experimental procedure 105
2.3. Quantitative and qualitative analysis of ripoptosome-mediated cell death 105
2.3.1. Screening test: Crystal violet cell death assay 105
2.3.1.1. Experimental procedure 106
2.3.2. Specific test to assay the quality of cell death: Annexin V/propidium iodide staining followed by FACS analysis 106
2.3.2.1. Experimental procedure 107
2.3.3. Morphological analysis: Sytox Green/Hoechst staining followed by fluorescent microscopy 107
2.3.3.1. Experimental procedure 108
2.4. Signaling pathway analysis: siRNA knockdown of target proteins involved in ripoptosome-mediated cell death 108
2.4.1. Experimental procedure 108
3. Biochemical Analysis of the Ripoptosome: Analysis of Ripoptosome Formation and Identification of Novel Components via ... 109
3.1. Caspase-8 immunoprecipitation 109
3.1.1. Experimental procedure 109
3.2. Ripoptosome purification by tandem-affinity purification 110
3.3. Complex gel filtration combined with mass spectrometry 111
3.4. Advantages and disadvantages of these procedures 111
4. Outlook: Future Implications of the Function and Regulation of the Ripoptosome 112
References 115
Chapter Five: Tools and Techniques to Study Ligand–Receptor Interactions and Receptor Activation by TNF Superfamily Members 118
1. Introduction 119
2. Methods 121
2.1. Tagged ligands and receptors for interaction and functional studies 121
2.1.1. Tagged ligands 121
2.1.2. Tagged receptors 122
2.1.3. Purification and storage of ligands and receptors 122
2.2. The measure of ligand–receptor interactions by ELISA 123
2.2.1. Measure of ligand–receptor interactions with crude or purified tagged proteins 123
2.2.1.1. Materials 123
2.2.1.2. Method 123
2.2.2. Measure interactions of untagged proteins or inhibitors by competition in the receptor-Fc and Flag-ligand ELISA 126
2.2.2.1. Method 126
2.3. The measure of ligand-receptor interactions by immunoprecipitation 126
2.3.1. Reagents 127
2.3.2. Method 127
2.3.2.1. Precipitations with receptors-Fc 127
2.3.2.2. Precipitations with heparin-Sepharose 127
2.4. The measure of ligand–receptor interactions by FACS 128
2.4.1. Interactions of tagged ligands with GPI-anchored receptors 128
2.4.1.1. Reagents 128
2.4.1.2. Method 128
Cell transfection and preparation 128
For Fc-ligands 129
For Flag-ligands using unconjugated anti-Flag (human cells only) 129
For Flag-ligands using biotinylated anti-Flag (for any cell) 129
For anti-GPI 129
Final steps 129
Additional remarks 130
2.4.2. Interactions of tagged receptors with BAFFN-fusion ligands 130
2.4.2.1. Reagents 130
2.4.2.2. Method 130
2.5. The measure of ligand activity using reporter cells 131
2.5.1. Generation of receptor: Fas-expressing reporter cell lines 131
2.5.1.1. Reagents 131
2.5.1.2. Method 131
Preparation of retrovirus 131
2.5.2. Monitoring ligand activity by apoptosis induction in reporter cell lines 134
2.5.2.1. Reagents 134
2.5.2.2. Method 134
2.5.3. Monitoring inhibitors or activators of ligands and receptors in reporter cell lines 135
2.5.4. Monitoring ligand activity with NF-.B reporter cells 135
2.5.4.1. Reagents 135
2.5.4.2. Method 136
2.6. The measure of ligand-independent receptor interactions by Förster resonance energy transfer 136
2.6.1. Method 138
3. Conclusions 138
Acknowledgments 139
References 139
Chapter Six: Necrotic Cell Death in Caenorhabditis elegans 142
1. Introduction 143
1.1. Characteristics of necrotic cells 143
1.2. Caenorhabditis elegans as a model to study necrosis 144
1.3. The apoptotic machinery in C. elegans 145
2. Necrotic Cell Death Paradigms During C. elegans Development 145
2.1. Death of the linker cell 145
2.2. Death of mis-specified uterine-vulval (uv1) cells 146
3. Nondevelopmental Necrotic Death 149
3.1. Cell death induced by ionic imbalance 149
3.1.1. Degenerins 149
3.1.2. Other ion channels 150
3.2. Heat-induced necrotic death 152
3.3. Bacterial infection-induced necrosis 154
3.4. Hypo-osmotic shock-induced cell death 154
4. Execution of Necrosis 155
5. C. elegans as a Model for Human Diseases Entailing Necrosis 157
5.1. Hypoxia 157
5.2. Parkinson´s disease 158
5.3. Tau toxicity: Modeling Alzheimer´s disease in C. elegans 160
6. Concluding Remarks 162
Acknowledgments 164
References 164
Chapter Seven: Noncanonical Cell Death in the Nematode Caenorhabditis elegans 172
Highlights 173
1. Introduction 173
2. Pathological Cell Death Induced by Genome Lesions and Environmental Stress 174
2.1. Ion channel mutations 174
2.2. NAD metabolism defects 177
2.3. Cell differentiation mutations 178
2.4. lin-24/lin-33 mutants 179
2.5. A latent apoptotic pathway in Pn.p cells? 180
2.6. Cell shedding in caspase mutants 182
3. Developmental Cell Deaths That Do not Follow the Canonical Apoptotic Pathway 183
3.1. Germline cell death 183
3.2. Tail-spike cell death 184
3.3. Sex-specific death of CEM neurons 185
3.4. The use of alternate caspases in dying cells 186
4. Nonapoptotic, Caspase-Independent Linker Cell Death 187
5. Conclusion 190
Acknowledgments 190
References 190
Chapter Eight: Autophagy and Cell Death in the Fly 196
1. Introduction 197
1.1. Drosophila as a biological system for studying autophagic cell death 197
1.2. Genetic approaches to study autophagic cell death in Drosophila 198
2. Materials and Methods 199
2.1. Fly food 199
2.2. Staging of animals 200
2.3. Histology 200
2.3.1. Preparation of samples 201
2.3.2. Sectioning 201
2.3.3. Staining 202
2.4. Immunochemistry 202
2.4.1. Immunoblotting 203
2.4.2. Immunofluorescence 203
2.5. Terminal deoxynucleotidyl transferase dUTP nick end labeling 204
2.6. Transmission electron microscopy 205
2.7. Atg8 tagged fluorescence 206
3. Data Analysis and Interpretation 206
3.1. Interpreting histological sections 206
3.2. Quantifying and interpretation of TUNEL 209
3.3. Quantifying and interpretation of immunochemistry and fluorescently tagged Atg8 209
3.3.1. Immunoblotting 209
3.3.2. Immunofluorescence and fluorescently tagged Atg8 210
3.4. Quantifying and interpretation of TEM 212
3.5. Caveats to autophagy markers and flux through the pathway 212
Acknowledgments 213
References 213
Chapter Nine: Structural Studies of Death Receptors 216
1. Introduction. Signaling by the Tumor Necrosis Receptor Superfamily 217
2. Outline Death Ligand and DR Domain Structure 219
3. DR Ectodomain Structure 221
3.1. The TNFR1 ectodomain 224
3.2. The TRAIL-R2 ectodomain 225
3.3. CD95 ectodomain 227
4. Physiological Complexes of Death Ligands with DRs 228
5. A Decoy Receptor-Ligand Complex 229
6. The DR Preligand Association Domain 230
7. Death Ligand Structure-Activity Relationships 232
8. Structural Analysis of AntiTNF Agents 234
9. Structural Analysis of the Blockade of DR Function 235
10. DR Cytoplasmic Domains 236
11. DD Structure 237
12. The DD Superfamily 240
13. DD Assembly Revealed by the Structure of the PIDDosome Core 241
14. Structural Characterization of CD95:FADD-DD Complexes 243
15. Relevance of CD95:FADD-DD Assemblies to Physiological CD95 Signaling 245
16. Unanswered Questions and Future Prospects 248
Acknowledgments 249
References 249
Chapter Ten: Use of E2Ubiquitin Conjugates for the Characterization of Ubiquitin Transfer by RING E3 Ligases Such as the ... 258
1. Introduction 259
2. Synthesis of E2Ub Conjugates 261
2.1. Purification of the E1 262
2.2. Purification of the E2 262
2.3. Purification of ubiquitin 263
2.4. Formation of disulfide-linked E2ubiquitin conjugate 263
Experimental procedure: 263
2.5. Formation of oxyester- and isopeptide-linked conjugate 265
Experimental procedure: 265
3. Characterization of RING-E2Ub Complexes 266
3.1. Binding studies 267
3.1.1. Pulldown assays 268
3.1.2. Analytical SEC 269
3.1.3. SPR and ITC 270
3.2. Discharge assays 271
3.3. Structural studies of RING-E2Ub complexes 272
4. Conclusion 274
Acknowledgments 275
References 275
Chapter Eleven: Multidimensional Profiling in the Investigation of Small-Molecule-Induced Cell Death 280
1. Introduction 281
2. Gene Expression Profiling 286
2.1. Comparing small-molecule profiles 286
2.2. Protocol for the use of the Connectivity Map database 287
2.3. Applications in cell death 288
2.4. Advantages and limitations in the study of cell death 290
3. Protein Quantification 292
3.1. Comparing small-molecule profiles 292
3.2. Application in cell death 293
3.3. Advantages and limitations in the study of cell death 294
4. Gene-Small-Molecule Interactions 295
4.1. Chemical–genetic profiling in yeast 295
4.2. Applications of yeast profiling in cell death 295
4.3. Chemical–genetic profiling in mammalian cells 296
4.4. Advantages and limitations in the study of cell death 296
5. Small-Molecule Combination Interactions 297
5.1. Profiles based on small-molecule interactions 297
5.2. Advantages and limitations in the study of cell death 298
6. Cell Line Viability Profiling 299
6.1. NCI60 screen 299
6.1.1. Notable applications of the NCI60 screen 299
6.2. Use of molecularly characterized cell lines 301
6.2.1. Molecular characterization of NCI60 cell lines 301
6.2.2. Expanded cell line databases 301
6.3. Advantages and limitations in the study of cell death 302
7. Quantitative Imaging 303
7.1. High-content imaging in cell culture 303
7.2. Advantages and limitations of image-based profiles in studying cell death 304
8. Modulatory Profiling 305
8.1. Design and validation 305
8.2. Modulatory profiling protocol 308
8.3. Application of modulatory profiling to the investigation of ferroptosis 310
8.4. Advantages and limitations in the study of cell death 310
9. Conclusions 311
References 312
Author Index 318
Subject Index 346
Color Plate 354

Chapter One

Assays for Necroptosis and Activity of RIP Kinases


Alexei Degterev*; Wen Zhou; Jenny L. Maki*; Junying Yuan,1    * Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
† Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
1 Corresponding author: email address: junying_yuan@hms.harvard.edu

Abstract


Necrosis is a primary form of cell death in a variety of human pathologies. The deleterious nature of necrosis, including its propensity to promote inflammation, and the relative lack of the cells displaying necrotic morphology under physiologic settings, such as during development, have contributed to the notion that necrosis represents a form of pathologic stress-induced nonspecific cell lysis. However, this notion has been challenged in recent years by the discovery of a highly regulated form of necrosis, termed regulated necrosis or necroptosis. Necroptosis is now recognized by the work of multiple labs, as an important, drug-targetable contributor to necrotic injury in many pathologies, including ischemia–reperfusion injuries (heart, brain, kidney, liver), brain trauma, eye diseases, and acute inflammatory conditions. In this review, we describe the methods to analyze cellular necroptosis and activity of its key mediator, RIP1 kinase.

Keywords

Necrosis

Necroptosis

Necrosome

RIP1

RIP3

MLKL

Apoptosis

Cell death

1 Introduction


1.1 Distinguishing features of necroptotic cell death


Discovery of regulated necrosis originates from the observations that “canonical” inducers of apoptosis, such as agonists TNFα family of death domain receptors (DRs), can trigger cell death morphologically resembling necrosis in cells either intrinsically deficient in caspase activation (e.g., mouse fibrosarcoma L929 cells) or under conditions when caspase activation is inhibited (e.g., caspase-8-deficient Jurkat cells or cells treated with pan-caspase inhibitor zVAD.fmk) (Holler et al., 2000; Matsumura et al., 2000; Vercammen, Vandenabeele, Beyaert, Declercq, & Fiers, 1997). The lack of caspase activation as well as the absence of other typical features of apoptosis, such as cytochrome c release, membrane blebbing, phosphatidylserine (PS) exposure, and intranucleosomal DNA cleavage, served as important initial differentiators between necroptosis and apoptosis (Tait & Green, 2008).

Electron microscopy has also proved very useful in distinguishing necroptosis from apoptosis in morphology. Necroptotic cells are characterized by the lack of typical nuclear fragmentation, swelling of cellular organelles especially mitochondria, and the loss of plasma membrane integrity, whereas apoptotic cells exhibit shrinkage, blebbing, nuclear fragmentation, and chromatin condensation (Degterev et al., 2005). Robust activation of autophagy is another feature of necroptosis which provides useful means to distinguish this form of cell death in vitro and in vivo both morphologically (e.g., by EM) and at the molecular level (e.g., by measuring of LC3II formation) (Degterev et al., 2005; Yu et al., 2004). This leads to necroptosis in some cases being referred to as “autophagic cell death,” such as zVAD-induced death of L929 cells (Yu et al., 2004). It should be noted, however, that functional role of autophagy varies greatly depending on the specifics of necroptosis activation, with instances where this process promotes, inhibits, or does not affect cell death (Degterev et al., 2005; Shen & Codogno, 2012; Yu et al., 2004). Furthermore, activation of necroptosis-inducing necrosome complex (discussed below) can also happen downstream from autophagosome formation (Basit, Cristofanon & Fulda, 2013).

A detailed comparison of TNF-induced necroptosis and H2O2-induced necrosis was performed by Vanden Berghe et al. (2010). Despite the different kinetics of cellular events including ROS production, mitochondrial polarization changes, and lysosomal membrane permeabilization, the major hallmarks of necroptosis and oxidant-induced necrosis were remarkably similar, leading to an important conclusion that necroptosis is a subtype of necrosis, morphologically indistinguishable from other types of necrosis but defined by a specific mode of activation (discussed below).

Generation of DAMPs as a result of cell lysis is an important consequence of necroptotic death both in vitro and in vivo (Duprez et al., 2011; Murakami et al., 2013). In addition, recent evidence suggests that synthesis of TNFα occurs independently of cell death as a result of specific signaling by key necroptosis initiator RIP1 kinases (RIPK1) (Christofferson et al., 2012; Kaiser et al., 2013; McNamara et al., 2013). Autocrine TNFα can promote cell death dependent on a cytosolic complex “ripoptosome” consisting of RIPK1, FADD, and caspase-8 (Biton & Ashkenazi, 2011; Hitomi et al., 2008; Kaiser et al., 2013; Tenev et al., 2011). Several instances have also been reported where RIPK1 and RIPK3 promote inflammatory signaling through the production of IL-1α and IL-1β/IL-18 in the absence of cell death (Kang, Yang, Toth, Kovalenko, & Wallach, 2013; Lukens et al., 2013). These data highlight complex interrelationship between necroptosis and inflammation.

1.2 Pathways and mediators of necroptosis


We refer the readers to a number of in-depth reviews on the subject (Christofferson et al., 2012; Christofferson, Li, & Yuan, 2014; Christofferson & Yuan, 2010b; Fulda, 2013; Zhou, Han, & Han, 2012). We will just briefly summarize some of the key findings. Initiation of necroptosis is best understood in the context of TNFα signaling. Engagement of TNFR1 leads to the formation of a membrane-bound complex named Complex I, containing RIPK1, TRADD, and TRAF2 as key components (Micheau & Tschopp, 2003). Ubiquitination of Lys377 of RIPK1 within this complex leads to the assembly of NF-kB-activating complexes involving TAK1 and IKK kinases (Ea, Deng, Xia, Pineda, & Chen, 2006). Dissociation of the components from TNFR1 is followed by the assembly of cytosolic signaling complexes: either Complex IIa/DISC including RIPK1, FADD, and caspase-8 which leads to apoptosis (Micheau & Tschopp, 2003), or Complex IIb/necrosome including FADD, RIPK1, and RIPK3 which leads to necroptosis in the absence of caspase activity (summarized in Galluzzi, Kepp, & Kroemer, 2009). Activation of necroptosis requires cross-phosphorylation of RIPK1 and RIPK3, utilizing Ser/Thr kinase domains of both proteins (Cho et al., 2009). RIPK1 and RIPK3 kinases further form amyloid-like fibers (Li et al., 2012), and RIPK3 recruits and phosphorylates pseudokinase MLKL on Thr357/Ser358, which serves as a critical gateway to necroptosis execution (Murphy et al., 2013; Sun et al., 2012; Wu et al., 2013). Downstream events are currently less well understood. As discussed above, oxidative stress mediated by mitochondrial Complex I and NADPH oxidase was found to play a role in some cell types. Other factors, such as Ca2 +, ceramide, activation of autophagy, and HtrA2 and UCH-L1 proteases (Sosna et al., 2013), have also been proposed to play a role. However, connections between these factors and necrosome remain unknown.

Other signals were also shown to promote necrosome activation, but the mechanisms may differ. For example, multiple Toll-like receptors (TLRs) were found to induce necroptosis (He, Liang, Shao, & Wang, 2011; Kaiser et al., 2013). The mechanisms differ depending on the specific signals and cell types. TLR3 and TLR4 act through adaptor TRIF to directly recruit RIPK1 and RIPK3 through their RHIM domains, while other TLRs signaling through MyD88 adaptor trigger necroptosis through an autocrine TNFα loop. Furthermore, while RIPK1 is required for TRIF-mediated necroptosis in macrophages, it is dispensable in epithelial and fibroblast cells. Additional signals directly triggering RIPK3, such as activation of viral DNA sensor DAI (Upton, Kaiser, & Mocarski, 2012), have also been described, and overexpression of RIPK3 was shown to reduce the requirement for RIPK1 in necroptosis initiation (Moujalled et al., 2013). Interferons were also found to be efficient inducers of necroptosis, utilizing kinase PKR to initiate necrosome formation (Thapa et al., 2013).

While RIPK3 clearly plays an indispensable role in necroptosis, RIPK1 appears to serve a critical role as a master regulator controlling multiple cell fate decisions, including cell survival, apoptosis, and necroptosis. RIPK1 is a multidomain protein, which contains N-terminal Ser/Thr kinase, followed by intermediate domain including K377 ubiquitination site and RHIM motif, and C-terminal death domain mediating binding to DRs. E3 ubiquitin ligases cIAP1/2 in concert with TRAF2 ubiquitinates RIPK1 in Complex I, providing conditions for TAK1 and IKK kinase complex binding, activating the downstream proinflammatory...

Erscheint lt. Verlag 24.7.2014
Sprache englisch
Themenwelt Medizin / Pharmazie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Zellbiologie
ISBN-10 0-12-801619-1 / 0128016191
ISBN-13 978-0-12-801619-0 / 9780128016190
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 29,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25