Statistical Inference on Residual Life (eBook)
XI, 201 Seiten
Springer New York (Verlag)
978-1-4939-0005-3 (ISBN)
This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.
Dr. Jong-Hyeon Jeong is a full professor of Biostatistics at the University of Pittsburgh. Dr. Jeong's main research area has been survival analysis and clinical trials. In survival analysis, he has worked on frailty modeling, efficiency of survival probability estimates from the proportional hazards model, weighted log-rank test, competing risks, quantile residual life, and likelihood theory such as empirical likelihood and hierarchical likelihood. In clinical trials, he has been involved in several phase III clinical trials on breast cancer treatment as the primary statistician. He has been teaching statistical theory courses and survival analysis in the Department of Biostatistics at the University of Pittsburgh. Dr. Jeong holds his PhD degree in statistics from the University of Rochester and has been an elected member of the International Statistical Institute (ISI) since 2007.
This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.
Dr. Jong-Hyeon Jeong is a full professor of Biostatistics at the University of Pittsburgh. Dr. Jeong's main research area has been survival analysis and clinical trials. In survival analysis, he has worked on frailty modeling, efficiency of survival probability estimates from the proportional hazards model, weighted log-rank test, competing risks, quantile residual life, and likelihood theory such as empirical likelihood and hierarchical likelihood. In clinical trials, he has been involved in several phase III clinical trials on breast cancer treatment as the primary statistician. He has been teaching statistical theory courses and survival analysis in the Department of Biostatistics at the University of Pittsburgh. Dr. Jeong holds his PhD degree in statistics from the University of Rochester and has been an elected member of the International Statistical Institute (ISI) since 2007.
Introduction.- Inference on Mean Residual Life.- Quantile Residual Life.- Quantile Residual Life under Competing Risks.- Other Methods for Inference on Quantiles.- Study Design based on Quantile (Residual) Life.- Appendix: R codes.- References.- Index.
Erscheint lt. Verlag | 20.1.2014 |
---|---|
Reihe/Serie | Statistics for Biology and Health | Statistics for Biology and Health |
Zusatzinfo | XI, 201 p. 17 illus., 12 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Studium ► Querschnittsbereiche ► Epidemiologie / Med. Biometrie | |
Naturwissenschaften ► Biologie | |
Technik | |
Schlagworte | Biostatistics • Clinical Trials • Competing Risks • empirical likelihood • Mean (Quantile) Residual Life • Mean Residual Life • reliability theory • Statistics • Survival Analysis |
ISBN-10 | 1-4939-0005-6 / 1493900056 |
ISBN-13 | 978-1-4939-0005-3 / 9781493900053 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich