Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis Knowledge Updates 2013 Vol. 2 (eBook)

eBook Download: EPUB
2014 | 1. Auflage
532 Seiten
Thieme (Verlag)
978-3-13-198431-9 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2013 Vol. 2 -
Systemvoraussetzungen
2.999,99 inkl. MwSt
(CHF 2929,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Science of Synthesis is a reference work for preparative methods in synthetic chemistry. Its product-based classification system enables chemists to easily find solutions to their synthetic problems.

Key Features:

  • Critical selection of reliable synthetic methods, saving the researcher the time required to find procedures in the primary literature.
  • Expertise provided by leading chemists.
  • Detailed experimental procedures.
  • The information is highly organized in a logical format to allow easy access to the relevant information.

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Science of Synthesis: Knowledge Updates 2013/2 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 18
Table of Contents 20
Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10–8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) 36
1.1 Product Class 1: Organometallic Complexes of Nickel 36
1.1.5 Organometallic Complexes of Nickel 36
1.1.5.1 Nickel Complexes of 1,3-Dienes 36
1.1.5.1.1 Method 1: Applications in Diene–Diene Cycloadditions 36
1.1.5.1.2 Method 2: Diene–Aldehyde Reductive Coupling 38
1.1.5.1.2.1 Variation 1: Triethylsilane-Mediated Reactions 38
1.1.5.1.2.2 Variation 2: Triethylborane-Mediated Reactions 39
1.1.5.1.2.3 Variation 3: Organoaluminum-Mediated Reactions 40
1.1.5.1.2.4 Variation 4: Bismetalative Reductive Coupling Mediated by Main Group Bimetallic Reagents 42
1.1.5.1.2.5 Variation 5: Reductive Coupling of Dienes with Other Carbonyl Compounds or Imines 44
1.1.5.1.3 Method 3: Addition of Main Group Elements to Dienes 47
1.1.5.1.3.1 Variation 1: Hydroelement Addition to Dienes 47
1.1.5.1.3.2 Variation 2: Interelement Addition to Dienes 48
1.1.5.1.3.3 Variation 3: Main Group Element/Carbon Nucleophile Addition to Dienes 49
1.1.5.1.3.4 Variation 4: Addition of C--H Bonds to Dienes 50
1.1.5.2 Nickel–Allyl Complexes 51
1.1.5.2.1 Method 1: Oxidative Addition of But-3-enenitriles in the Presence of Lewis Acids 51
1.1.5.2.2 Method 2: Oxidative Addition of Allylic Chalcogenides 52
1.1.5.2.3 Method 3: Oxidative Heterocoupling of Carbonyl Compounds and Dienes 53
1.1.5.2.4 Method 4: Reaction of Nickel–Allyl Complexes with Main Group Organometallics 53
1.1.5.2.5 Method 5: Alkyne Insertion with Nickel–Allyl Complexes 54
1.1.5.2.5.1 Variation 1: But-3-enenitrile-Derived Nickel–Allyl Complexes 55
1.1.5.2.5.2 Variation 2: Allyl Chalcogenide Derived Nickel–Allyl Complexes 56
1.1.5.2.5.3 Variation 3: Nickel–Allyl Complexes Derived from Dimerization of 1,3-Dienes 56
1.1.5.2.5.4 Variation 4: Nickel–Allyl Complexes Derived from Dienes and Carbonyl Compounds 57
1.1.5.3 Nickel–Alkyne Complexes 58
1.1.5.3.1 Method 1: Coupling of Alkynes with Carbon Dioxide 58
1.1.5.3.2 Method 2: Coupling of Alkynes with Carbonyl Compounds 60
1.1.5.3.2.1 Variation 1: Coupling of Alkynes with Aldehydes and Ketones 60
1.1.5.3.2.2 Variation 2: Coupling of Alkynes with Aldimines 61
1.1.5.3.2.3 Variation 3: Coupling of Alkynes with Unsaturated Carbonyl Compounds 63
1.1.5.3.3 Method 3: Reductive Coupling of Alkynes with Epoxides 65
1.1.5.3.4 Method 4: [2 +2+ 2] Cycloaddition with Heterocumulene Partners 66
1.1.5.3.5 Method 5: Reactions of Nickel–Alkyne Complexes with Strained Ring Systems 68
1.1.5.3.6 Method 6: Addition of Main Group Elements to Alkynes 70
1.1.5.3.6.1 Variation 1: Hydroelement Additions to Alkynes 70
1.1.5.3.6.2 Variation 2: Carbon–Main Group Element Additions to Alkynes 72
1.1.5.3.6.3 Variation 3: Direct Carbon–Hydrogen Additions to Alkynes 74
1.1.5.3.6.4 Variation 4: Direct Carbon–Carbon Additions to Alkynes 75
1.1.5.3.7 Method 7: Nickel–Aryne Complexes 76
1.1.5.4 Nickel–Alkene Complexes 78
1.1.5.4.1 Method 1: Alkene Hydrocyanation 78
1.1.5.4.2 Method 2: Alkene Polymerization 78
1.1.5.4.3 Method 3: Alkene Hydroamination 79
1.1.5.4.4 Method 4: Alkene Hydrophosphinylation 80
1.1.5.4.5 Method 5: Alkene Carboxylation 81
1.1.5.4.6 Method 6: Direct Alkene Addition 81
1.1.5.4.6.1 Variation 1: Direct Hydroalkenylation 81
1.1.5.4.6.2 Variation 2: Direct Hydroalkylation 82
1.1.5.4.7 Method 7: Coupling of Alkenes and Aldehydes 83
1.1.5.4.8 Method 8: Alkene Rearrangements 84
1.1.5.4.8.1 Variation 1: Allylic Isomerization 85
1.1.5.4.8.2 Variation 2: Isomerization of Vinylcyclopropanes and Analogous Compounds 85
1.1.5.5 Nickel–Allene Complexes 86
1.1.5.5.1 Method 1: Allene Oligomerization 87
1.1.5.5.2 Method 2: Allene Carboxylation 87
1.1.5.5.3 Method 3: Reductive Coupling of Allenes and Aldehydes 88
1.1.5.5.4 Method 4: Coupling of Allenes and a,ß-Unsaturated Carbonyl Compounds 90
1.2 Product Class 2: Organometallic Complexes of Palladium 98
1.2.6 High-Valent Palladium in Catalysis 98
1.2.6.1 C--H Activation/Functionalization of Arenes and Alkanes 101
1.2.6.1.1 Method 1: Functionalization of Aromatic C--H Bonds 102
1.2.6.1.1.1 Variation 1: C--C Bond Construction 102
1.2.6.1.1.2 Variation 2: C--O Bond Construction 107
1.2.6.1.1.3 Variation 3: C--X Bond Construction (X = Halo) 109
1.2.6.1.1.4 Variation 4: C--N Bond Construction 112
1.2.6.1.2 Method 2: Functionalization of Aliphatic C--H Bonds 113
1.2.6.1.2.1 Variation 1: C--C Bond Construction 113
1.2.6.1.2.2 Variation 2: C--O Bond Construction 115
1.2.6.1.2.3 Variation 3: C--X Bond Construction (X = Halo) 117
1.2.6.1.2.4 Variation 4: C--N Bond Construction 118
1.2.6.2 Difunctionalization of Alkenes 120
1.2.6.2.1 Method 1: C--O Bond Construction from High-Valent Palladium Centers 120
1.2.6.2.1.1 Variation 1: Initiated by Aminopalladation 120
1.2.6.2.1.2 Variation 2: Initiated by Oxypalladation 125
1.2.6.2.2 Method 2: C--N Bond Construction from High-Valent Palladium Centers 126
1.2.6.2.2.1 Variation 1: Initiated by Aminopalladation 126
1.2.6.2.2.2 Variation 2: Initiated by Fluoropalladation 129
1.2.6.2.3 Method 3: C--X Bond Construction (X = Halo) from High-Valent Palladium Centers 130
1.2.6.2.3.1 Variation 1: Initiated by Aminopalladation 130
1.2.6.2.3.2 Variation 2: Initiated by Carbopalladation 132
1.2.6.2.4 Method 4: C--C Bond Construction from High-Valent Palladium Centers 134
1.2.6.2.4.1 Variation 1: Initiated by Aminopalladation 135
1.2.6.2.4.2 Variation 2: Initiated by Oxypalladation–Insertion 135
1.2.6.2.4.3 Variation 3: Initiated by Arylpalladation 137
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 144
4.4 Product Class 4: Silicon Compounds 144
4.4.5 Product Subclass 5: Disilanes and Oligosilanes 144
4.4.5.1 Disilanes 145
4.4.5.1.1 Method 1: Synthesis by Formation of Si--Si Bonds 149
4.4.5.1.1.1 Variation 1: Reductive Coupling of Triorganosilyl Halides 149
4.4.5.1.1.2 Variation 2: Dehydrogenative Coupling of Hydrosilanes 151
4.4.5.1.1.3 Variation 3: Coupling of Silyl Halides with Silyl Anions 152
4.4.5.1.2 Method 2: Synthesis by Cleavage of Si--C Bonds 153
4.4.5.1.2.1 Variation 1: Demethylating Chlorination 153
4.4.5.1.2.2 Variation 2: Dearylation and Dealkylation with Strong Acids 154
4.4.5.1.3 Method 3: Synthesis by Functionalization of Si--X Bonds 156
4.4.5.1.3.1 Variation 1: Hydrogenation with Lithium Aluminum Hydride 156
4.4.5.2 Oligosilanes 157
4.4.5.2.1 Method 1: Synthesis by Formation of Si--Si Bonds 159
4.4.5.2.1.1 Variation 1: Wurtz-Type Coupling 160
4.4.5.2.2 Method 2: Synthesis by Cleavage of Si--Si Bonds and Subsequent Derivatization 161
4.4.5.2.2.1 Variation 1: Silyl Anion Formation 161
4.4.5.2.2.2 Variation 2: Anion Hydrolysis to Hydrosilanes 162
4.4.5.2.2.3 Variation 3: Halogenation 162
4.4.5.2.3 Method 3: Synthesis by Alkylation and Arylation 163
4.4.5.2.3.1 Variation 1: Reactions Using Silyl Anions 163
4.4.5.2.3.2 Variation 2: Reactions Using Silyl Halides 165
4.4.5.2.3.3 Variation 3: Cross Coupling 166
4.4.5.2.4 Method 4: Synthesis by Hydrosilylation 167
4.4.5.2.5 Method 5: Synthesis by Silyl Ether Formation 168
4.4.5.2.6 Method 6: Synthesis by Cleavage of Si--C Bonds 169
4.4.9 Product Subclass 9: Silylzinc Reagents 176
Synthesis of Product Subclass 9 176
4.4.9.1 Method 1: Synthesis from a Triorganosilyl Anion Source and Zinc(II) Reagents 176
4.4.9.1.1 Variation 1: Dialkyl(triorganosilyl)zincate Reagents from an Alkylmetal, a (Triorganosilyl)metal Reagent, and a Zinc(II) Salt 178
4.4.9.2 Method 2: Synthesis of Dianion-Type Silylzincates 178
Applications of Product Subclass 9 in Organic Synthesis 179
4.4.9.3 Method 3: Addition of Silyl Groups to Alkenes, Alkynes, and Epoxides 179
4.4.21.13 Silylamines 186
4.4.21.13.1 Method 1: Reaction of Chlorosilanes with Amines Bearing NH Groups 186
4.4.21.13.1.1 Variation 1: Reaction of Allyltrichlorosilane with Diamines 186
4.4.21.13.1.2 Variation 2: Reaction of Allyltrichlorosilane with Amino Alcohols 187
4.4.21.13.1.3 Variation 3: Reaction of Silicon Tetrachloride with 1-Methyl-1H-imidazole-2(3H)-thione 187
4.4.21.13.2 Method 2: Reaction of Silicon Tetrachloride with Silylamines 188
4.4.21.13.3 Method 3: Reaction of Halosilanes with Lithium Amides 189
4.4.21.13.3.1 Variation 1: Reaction of Silicon Tetrabromide with Lithium ß-Diketiminates 189
4.4.21.13.3.2 Variation 2: Reaction of Silicon Tetrachloride or Trichlorosilane with N,N'-Dialkylbenzimidamide Lithium Salts To Form Low-Coordinate Silicon Species 190
4.4.21.13.3.3 Variation 3: Reaction of Trichlorosilane with N,N'-Dialkylbenzimidamide Lithium Salts To Form High-Coordinate Silicon Species 191
4.4.21.13.3.4 Variation 4: Reaction of Chlorosilanes with Dilithium Tetra-4-tolylporphyrinate 192
4.4.21.13.4 Method 4: Reaction of Halosilanes with Hetarenes or Tertiary Amines 193
4.4.21.13.4.1 Variation 1: Reaction of Dichlorosilane with 2,2'-Bipyridine To Form a High-Coordinate Silicon Species 193
4.4.21.13.4.2 Variation 2: Reaction of Silicon Tetrafluoride with a Triazacyclononane To Form a Cationic Silicon(IV) Species 193
4.4.21.13.5 Method 5: Reaction of Dichlorosilanes with Hydrazonic Acid Esters and Thermal Rearrangement 194
4.4.21.13.6 Method 6: Reaction of Di- and Trihydrosilanes with N-Heterocyclic Carbenes 194
4.4.21.13.7 Method 7: Dehydrogenative Condensation of Hydrosilanes with Amines 195
4.4.21.13.7.1 Variation 1: Ruthenium-Catalyzed Reaction of Hydrosilanes with Indoles and Carbazoles 195
4.4.21.13.7.2 Variation 2: Ytterbium-Catalyzed Reaction of Hydrosilanes with Amines 196
4.4.21.13.7.3 Variation 3: Zinc-Catalyzed Reaction of Hydrosilanes with Indoles 197
4.4.21.13.7.4 Variation 4: Reaction of 1-Boryl-2-(hydrosilyl)benzenes with Amines 198
4.4.21.13.8 Method 8: Preparation of Cyclic Diaminosilylenes 199
4.4.21.13.8.1 Variation 1: Reduction of Dihalosilanes with Alkali Metals 199
4.4.21.13.8.2 Variation 2: Dehydrochlorination Using N-Heterocyclic Carbenes 200
4.4.21.13.9 Method 9: Reactions of (Aminosilyl)lithiums 201
4.4.21.13.9.1 Variation 1: Preparation of an (Aminosilyl)pinacolborane 201
4.4.21.13.9.2 Variation 2: Preparation of 1,3-Diaminotrisilanes 202
4.4.22 Product Subclass 22: Silyl Phosphines 204
Synthesis of Product Subclass 22 205
4.4.22.1 Method 1: Synthesis from Silyl Hydrides 205
4.4.22.1.1 Variation 1: By Dehydrohalogenation 205
4.4.22.1.2 Variation 2: By Dehydrogenation with Phosphines 205
4.4.22.1.3 Variation 3: By Hydrosilylation of P--P Bonds 206
4.4.22.2 Method 2: Synthesis from Silyl Halides 207
4.4.22.2.1 Variation 1: From Elemental Phosphorus 207
4.4.22.2.2 Variation 2: From Phosphines 208
4.4.22.2.3 Variation 3: From Metal Phosphides 209
4.4.22.3 Method 3: Substitution by Silyllithiums 213
4.4.22.4 Method 4: Synthesis from Other Silyl Phosphines 213
4.4.22.4.1 Variation 1: By Exchange of Silyl Groups 214
4.4.22.4.2 Variation 2: By Conversion of Phosphines 214
4.4.22.4.3 Variation 3: By Transmetalation of Silyl Phosphines 215
4.4.22.5 Method 5: Miscellaneous Methods 215
Applications of Product Subclass 22 in Organic Synthesis 216
4.4.22.6 Method 6: Synthesis of Silicon-Containing Compounds 216
4.4.22.6.1 Variation 1: Synthesis of Silyl Ethers by Substitution 216
4.4.22.7 Method 7: Synthesis of Organophosphorus Compounds by Substitution 217
4.4.22.7.1 Variation 1: Of Haloalkanes 217
4.4.22.7.2 Variation 2: Of Haloarenes 218
4.4.22.7.3 Variation 3: Of Halohetarenes 220
4.4.22.7.4 Variation 4: Of Acyl Halides 221
4.4.22.8 Method 8: Synthesis of Organophosphorus Compounds by Addition 221
4.4.22.8.1 Variation 1: To Aldehydes 222
4.4.22.8.2 Variation 2: To Alkenes 222
4.4.22.8.3 Variation 3: To Alkynes 223
4.4.22.8.4 Variation 4: To Epoxides 224
4.4.22.9 Method 9: Synthesis of Organophosphorus Compounds by Addition–Elimination 225
4.4.22.9.1 Variation 1: Synthesis of Phosphaalkenes 225
4.4.22.9.2 Variation 2: Synthesis of Phosphaalkynes 226
4.4.22.9.3 Variation 3: Synthesis of Phosphorus-Containing Heterocycles 227
4.4.41.8 ß-Silyl Carbonyl Compounds 232
4.4.41.8.1 Method 1: Silylmetalation of Alkenes 236
4.4.41.8.1.1 Variation 1: Silylmetalation of a,ß-Unsaturated Carbonyl Compounds 237
4.4.41.8.1.2 Variation 2: Silylmetalation–Aldolization of a,ß-Unsaturated Carbonyl Compounds 239
4.4.41.8.1.3 Variation 3: Silaboration–Oxidation of meso-Methylenecyclopropanes 239
4.4.41.8.2 Method 2: Hydrosilylation of Alkynes 240
4.4.41.8.2.1 Variation 1: Hydrosilylation of Alkynyl Carbonyl Compounds 241
4.4.41.8.2.2 Variation 2: Hydrosilylation–Geminal Alkylation 241
4.4.41.8.3 Method 3: Asymmetric Conversion of a,ß-Unsaturated ß-Silyl Carbonyl Compounds into Their Saturated Counterparts 242
4.4.41.8.3.1 Variation 1: Asymmetric Hydrosilylation of a,ß-Unsaturated ß-Silyl Carbonyl Compounds 243
4.4.41.8.3.2 Variation 2: Asymmetric 1,4-Addition of Carbon Nucleophiles to a,ß-Unsaturated ß-Silyl Carbonyl Compounds 243
4.4.41.8.3.3 Variation 3: 1,4-Addition of Carbon Nucleophiles to Alkynyl ß-Silyl Carbonyl Compounds 245
4.4.41.8.4 Method 4: Rearrangements and Silyl Migration 246
Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles 250
17.5 Product Class 5: Seven-Membered Hetarenes with Two or More Heteroatoms 250
17.5.4 Seven-Membered Hetarenes with Two or More Heteroatoms 250
17.5.4.1 1,2-Diazepines 254
17.5.4.1.1 Synthesis by Ring-Closure Reactions 255
17.5.4.1.1.1 Method 1: Condensation of 1,5-Diketones with Hydrazine 255
17.5.4.1.1.1.1 Variation 1: Condensation of 1,5-Diketones, 1,5-Keto Acids, or 1,5-Keto Esters with Hydrazine 255
17.5.4.1.1.1.2 Variation 2: Condensation of Imidazothiadiazole Aldehydes with Hydrazine 256
17.5.4.1.1.1.3 Variation 3: Cyclization of Indol-2-ylacetates and Indole-2-carboxylates with Hydrazine 257
17.5.4.1.2 Synthesis by Ring Transformation 258
17.5.4.1.2.1 By Ring Enlargement 258
17.5.4.1.2.1.1 Method 1: Reaction of Benzocyclobutenones and Diazomethylene Compounds 258
17.5.4.1.2.1.2 Method 2: Synthesis from Benzoselenopyrylium Salts and Hydrazine 261
17.5.4.1.3 Synthesis by Substituent Modification 262
17.5.4.1.3.1 By Replacement of Oxygen or Sulfur 262
17.5.4.1.3.1.1 Method 1: Synthesis of Amidines from Benzodiazepinethiones 262
17.5.4.1.3.1.2 Method 2: Synthesis of Amidines from Benzodiazepinones and Primary or Secondary Amines Catalyzed by Titanium(IV) Chloride 263
17.5.4.2 1,3-Diazepines 264
17.5.4.2.1 Synthesis by Ring-Closure Reactions 265
17.5.4.2.1.1 Method 1: Synthesis from 2-(2-Isocyanophenyl)acetamides and Sulfur via Isothiocyanate Intermediates 265
17.5.4.2.1.2 Method 2: Synthesis from 4-Hydroxy-2H-1-benzopyran-2-one, Cyanoguanidine, and Aromatic or Heteroaromatic Aldehydes Using Molecular Iodine as Catalyst 266
17.5.4.2.1.3 Method 3: Synthesis from a Substituted Aminopyridine and Trichloroacetyl Isocyanate 267
17.5.4.2.1.4 Method 4: Synthesis from a Substituted Imidazol-5-amine and Triethyl Orthoformate 269
17.5.4.2.1.5 Method 5: Synthesis from a Substituted Imidazole-4,5-dicarboxylate and Guanidine 269
17.5.4.3 1,4-Diazepines 270
17.5.4.3.1 Synthesis by Ring-Closure Reactions 270
17.5.4.3.1.1 Method 1: Synthesis from Benzene-1,2-diamines, Meldrum’s Acid, and Isocyanides 270
17.5.4.3.1.2 Method 2: Synthesis from Benzene-1,2-diamines and 1,3-Dicarbonyl Compounds 272
17.5.4.3.1.3 Method 3: Synthesis from Pyridine-2,3-diamine and 1,1,1-Trichlorobut-3-en-2-ones 276
17.5.4.3.1.4 Method 4: Synthesis from Benzene-1,2-diamines, Diketene, Dialkyl Acetylenedicarboxylates, and Trialkyl Phosphites 276
17.5.4.3.1.5 Method 5: Synthesis from Benzene-1,2-diamines and 4-Halogenated N-Substituted 2-Oxo-1,2-dihydropyridine-3-carbodithioates 277
17.5.4.3.1.6 Method 6: Reductive Lactamization of Alkyl 2-[(2-Nitrophenyl)amino]benzoates 278
17.5.4.3.1.7 Method 7: Copper-Catalyzed Cyclization of 2-Iodoaniline Compounds 279
17.5.4.3.1.8 Method 8: Palladium-Catalyzed Intramolecular Carbonylation–Lactamization 280
17.5.4.3.1.9 Method 9: Palladium-Catalyzed Intramolecular Amination of N-Alkyl-2-amino-N-(2-iodophenyl)benzamides 281
17.5.4.3.1.10 Method 10: Copper-Catalyzed Cyclization of 2-Halobenzoic Acids with Benzene-1,2-diamine 282
17.5.4.3.1.11 Method 11: Intramolecular Aza-Wittig Reaction 283
17.5.4.3.1.12 Method 12: Synthesis from 2-Aminobenzophenones and Bromoacetyl Bromide or Chloroacetyl Chloride 285
17.5.4.3.1.13 Method 13: Bischler–Napieralski Cyclocondensation 288
17.5.4.3.1.14 Method 14: Buchwald Amination–Cyclization 291
17.5.4.3.2 Synthesis by Ring Transformation 294
17.5.4.3.2.1 By Ring Enlargement 294
17.5.4.3.2.1.1 Method 1: Synthesis from a-Amino Acids and Isatoic Acid Anhydride or Analogues 294
17.5.4.3.3 Synthesis by Substituent Modification 295
17.5.4.3.3.1 By Replacement of Chlorine 295
17.5.4.3.3.1.1 Method 1: Metal-Catalyzed Coupling of Chloro-5H-dibenzo[b,e][1,4]diazepines with Organozinc or -magnesium Compounds 295
Volume 18: Four Carbon--Heteroatom Bonds: X--C==X, X==C==X, X2C==X, CX4 300
18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes 300
18.1.7 Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes 300
18.1.7.1 Cyanogen Halides 300
18.1.7.1.1 Applications of Cyanogen Halides in Organic Synthesis 300
18.1.7.1.1.1 Method 1: Electrophilic Cyanation 300
18.1.7.1.1.2 Method 2: Formation of Cyanooxiranes from Ketones 301
18.1.7.2 Cyanates and Their Sulfur, Selenium, and Tellurium Analogues 302
18.1.7.2.1 Synthesis of Thiocyanates 302
18.1.7.2.1.1 Method 1: Nucleophilic Reactions from Thiocyanate Salts 302
18.1.7.2.1.1.1 Variation 1: Thiocyanates from Alcohols and Protected Alcohols 302
18.1.7.2.1.1.2 Variation 2: Ring Opening of Epoxides To Give ß-Hydroxy Thiocyanates 303
18.1.7.2.1.1.3 Variation 3: Oxidative a-Thiocyanation of Ketones 304
18.1.7.2.1.1.4 Variation 4: Oxidative Thiocyanation of Aromatic Compounds 305
18.1.7.2.1.2 Method 2: Thiocyanates by Ring Opening of Epoxides and Aziridines with Trimethylsilyl Isothiocyanate 306
18.1.7.2.1.3 Method 3: Thiocyanates from Acyl Isothiocyanates 306
18.1.7.2.1.4 Method 4: Cyanation of Thiols Using N-Cyano Heterocycles 307
18.1.7.2.2 Applications of Thiocyanates in Organic Synthesis 307
18.1.7.2.2.1 Method 1: 1,3-Oxathiolan-2-imines from Phenacyl Thiocyanates 308
18.1.7.3 Sulfonyl Cyanides 308
18.1.7.3.1 Applications of Sulfonyl Cyanides in Organic Synthesis 308
18.1.7.3.1.1 Method 1: Diaryl Sulfides from Sulfonyl Cyanides 308
18.1.7.3.1.2 Method 2: Allyl Sulfones from Sulfonyl Cyanides and Allylic Alcohols 309
18.1.7.3.1.3 Method 3: Synthesis of Aryl 4-Hydroxypyridin-2-yl Sulfones 310
18.1.7.4 Cyanamides and Their Derivatives 310
18.1.7.4.1 Synthesis of Cyanamides and Their Derivatives 310
18.1.7.4.1.1 Method 1: Substitution of Cyanamides 310
18.1.7.4.1.1.1 Variation 1: Acylation and Arylation of Cyanamides 310
18.1.7.4.1.1.2 Variation 2: Reaction of Cyanamides with Isocyanates, Isothiocyanates, Thioamides, or Nitriles Yielding Cyanoureas or Cyanoimidamides 311
18.1.7.4.1.2 Method 2: Cyanation of Amides Using Cyanogen Halides 313
18.1.7.4.1.3 Method 3: Oxidative Elimination from Dithiocarbamates and Thioureas 314
18.1.7.4.1.4 Method 4: Reaction of Isocyanates and Isothiocyanates with Hexamethyldisilazanide 314
18.1.7.4.1.5 Method 5: Synthesis from Dialkylamino-Substituted Acetamides by a Hofmann-Like Rearrangement 315
18.1.7.4.2 Applications of Cyanamides and Their Derivatives in Organic Synthesis 316
18.1.7.4.2.1 Method 1: Cyanation of Amines, Thiols, and CH-Acidic Compounds 316
18.1.7.4.2.2 Method 2: Synthesis of N,N-Dialkyl-4,5-dihydro-1H-imidazol-2-amines and N,N-Dialkyl-1H-imidazol-2-amines 317
18.1.7.4.2.3 Method 3: Chlorination with N-tert-Butyl-N-chlorocyanamide 318
18.1.7.4.2.4 Method 4: Cyclotrimerization of Alkynes or Diynes with Cyanamides To Give Pyridin-2-amines 319
18.11 Product Class 11: Seleno- and Tellurocarbonic Acids and Derivatives 324
18.11.10 Seleno- and Tellurocarbonic Acids and Derivatives 324
18.11.10.1 Selenocarbamates 324
18.11.10.1.1 Method 1: Reaction of N,N-Dimethylselenocarbamoyl Chloride with Lithium Alkaneselenolates, Areneselenolates, Alkanethiolates, or Arenethiolates 324
18.11.10.1.2 Method 2: Reaction of Isoselenocyanates with Nucleophiles 325
18.11.10.1.2.1 Variation 1: Reaction of Alkyl or Aryl Isoselenocyanates with Sodium Hydroselenide 325
18.11.10.1.2.2 Variation 2: Reaction of Acyl Isoselenocyanates with Alcohols, Thiols, or Selenols 326
18.11.10.1.2.3 Variation 3: Reaction of Acryloyl Isoselenocyanates with Sodium Hydroselenide 327
18.11.10.1.2.4 Variation 4: Reaction of Isoselenocyanates with Sodium Alkoxides 327
18.11.10.1.2.5 Variation 5: Reaction of Isoselenocyanates with Sodium Hydroselenide and Acryloyl Chlorides 328
18.11.10.1.2.6 Variation 6: Reaction of Isocyanates with Bis(dimethylaluminum) Selenide and Sodium Alkoxides 330
18.11.10.1.2.7 Variation 7: Nucleophilic Addition of N-Protected Amino Thiols to Isoselenocyanates 331
18.11.10.2 Selenosemicarbazides and Selenosemicarbazones 332
18.11.10.2.1 Method 1: Reaction of Isoselenocyanates with Hydrazine Derivatives 332
18.11.10.2.1.1 Variation 1: Reaction of Acyl Isoselenocyanates with Phenylhydrazine 332
18.11.10.2.1.2 Variation 2: Reaction of Trityl Isoselenocyanate with Hydrazine 333
18.11.10.2.2 Method 2: Reaction of Carbonyl Compounds with Selenosemicarbazides 334
18.11.10.2.2.1 Variation 1: Reaction of Aldehydes with Selenosemicarbazides 334
18.11.10.2.2.2 Variation 2: Reaction of Cyclohexanone with Hydrazine Hydrate and Potassium Selenocyanate 335
18.11.10.3 Selenoureas 337
18.11.10.3.1 Method 1: Reaction of N,N-Dimethylselenocarbamoyl Chloride with Amines 337
18.11.10.3.2 Method 2: Reaction of Viehe’s Salt with an Amine and Tetraethylammonium Tetraselenotungstate 338
18.11.10.3.3 Method 3: Reaction of Triethyl Orthoformate with Elemental Selenium and a Primary or Secondary Amine 338
18.11.10.3.4 Method 4: Reaction of N,N-Disubstituted Cyanamides with Sodium Selenide 340
18.11.10.3.5 Method 5: Reaction of Isoselenocyanates with an Amine 341
18.11.10.3.5.1 Variation 1: Reaction of Isoselenocyanates with Protected and Unprotected Glycosylamines 341
18.11.10.3.5.2 Variation 2: Reaction of Phenyl Isoselenocyanate with 2-Aminobenzonitriles 346
18.11.10.3.5.3 Variation 3: Reaction of Isoselenocyanates with Azetidinones under Basic Conditions 347
18.11.10.3.5.4 Variation 4: Reaction of 4-Isoselenocyanato-2,2,6,6-tetramethylpiperidin-1-oxyl with Amines 349
18.11.10.3.5.5 Variation 5: Reaction of Aryl Isoselenocyanates with Dimethylamine 351
18.11.10.3.5.6 Variation 6: Reaction of D-Glucosamine Hydrochloride or D-Mannosamine Hydrochloride with Aryl Isoselenocyanates 352
18.11.10.3.5.7 Variation 7: Reaction of Trityl Isoselenocyanate with a Primary Amine 354
18.11.10.3.5.8 Variation 8: Reaction of Isoselenocyanates Bearing Protected Amino Groups with Amines 354
18.11.10.3.6 Method 6: Reaction of Acyl Isoselenocyanates with Amines 356
18.11.10.3.6.1 Variation 1: Reaction of In Situ Generated Acyl Isoselenocyanates with Arylamines 356
18.11.10.3.6.2 Variation 2: Reaction of In Situ Generated Acyl Isoselenocyanates with Alkylamines 357
18.11.10.3.6.3 Variation 3: One-Pot Reaction of Aroyl Chlorides with Potassium Selenocyanate and Secondary Arylamines 357
18.11.10.3.7 Method 7: Selenation of Isocyanates with In Situ Generated Bis(dimethylaluminum) Selenide and Subsequent Treatment with Amines 358
18.11.10.3.8 Method 8: Reaction of Imidoyl Isoselenocyanates with Aromatic 2-Amino N-Heterocycles 360
18.11.10.3.9 Method 9: Reaction of 1-Methylimidazolium Salts with Selenium Powder and Potassium Carbonate 361
Volume 31: Arene--X (X = Hal, O, S, Se, Te, N, P) 364
31.42 Product Class 42: Arylphosphines and Derivatives 364
31.42.1 Synthesis of Product Class 42 364
31.42.1.1 Method 1: Synthesis by Nucleophilic Substitution at an Electrophilic Phosphorus Atom 364
31.42.1.1.1 Variation 1: Using Organometallic Reagents Prepared from Organic Halides 364
31.42.1.1.2 Variation 2: Using Carbanions Prepared by Reduction of Aryl--O Bonds 367
31.42.1.1.3 Variation 3: Using Carbanions Prepared by Halogen–Metal Exchange 367
31.42.1.1.4 Variation 4: Using Carbanions Prepared by Deprotonation of Acidic C--H Groups 369
31.42.1.1.5 Variation 5: Using Carbanions Prepared by Directed ortho-Metalation 371
31.42.1.1.6 Variation 6: Using Activated Silanes 373
31.42.1.1.7 Variation 7: By Miscellaneous Methods 373
31.42.1.2 Method 2: Synthesis by Nucleophilic Substitution with Phosphorus Nucleophiles 374
31.42.1.2.1 Variation 1: Using Phosphorus Nucleophiles Generated by Deprotonation of P--H Bonds 374
31.42.1.2.2 Variation 2: Using Phosphorus Nucleophiles Generated by Reduction of P--X Bonds (X = Halogen) 376
31.42.1.2.3 Variation 3: Using Phosphorus Nucleophiles Generated by Reduction of Aryl--P Bonds 377
31.42.1.2.4 Variation 4: Using Neutral Phosphorus Nucleophiles in the Absence of Base 378
31.42.1.2.5 Variation 5: Using Silylphosphines 379
31.42.1.3 Method 3: Synthesis by Transition-Metal-Catalyzed Coupling Reactions 379
31.42.1.3.1 Variation 1: Reactions Catalyzed by Palladium Complexes 380
31.42.1.3.2 Variation 2: Reactions Catalyzed by Nickel Complexes 382
31.42.1.3.3 Variation 3: Reactions Catalyzed by Copper Complexes 384
31.42.1.3.4 Variation 4: Reactions Catalyzed by Other Transition-Metal Complexes 384
31.42.1.4 Method 4: Synthesis by Addition to Multiple Bonds 384
31.42.1.4.1 Variation 1: Reactions Involving Uncatalyzed Addition 385
31.42.1.4.2 Variation 2: Addition Reactions Mediated by Radical Initiators 386
31.42.1.4.3 Variation 3: Addition Reactions Catalyzed by Transition-Metal Complexes 387
31.42.1.4.4 Variation 4: Addition to Conjugated Alkenes 388
31.42.1.4.5 Variation 5: Addition to Carbonyl or Imino Groups 390
31.42.1.5 Method 5: Synthesis by Decomplexation of Metal–Phosphine Complexes 392
31.42.1.6 Method 6: Synthesis by Deprotection of Arylphosphine–Borane Complexes 394
31.42.1.7 Method 7: Synthesis by Reduction of Arylphosphine Sulfides 395
31.42.1.7.1 Variation 1: Using Raney Nickel 396
31.42.1.7.2 Variation 2: Using Radical Reagents 397
31.42.1.7.3 Variation 3: Using Phosphorus(III) Compounds 397
31.42.1.8 Method 8: Synthesis by Reduction of Arylphosphine Oxides 398
31.42.1.8.1 Variation 1: Using Silanes 399
31.42.1.8.2 Variation 2: Using Aluminum Hydrides 401
31.42.1.8.3 Variation 3: Using Titanium Complexes as Catalysts 404
31.42.1.8.4 Variation 4: Using Boranes 405
31.42.1.9 Method 9: Synthesis by Modification of a Parent Arylphosphine 406
31.42.1.9.1 Variation 1: Modification of a Functional Group 406
31.42.1.9.2 Variation 2: Modification of the Carbon Skeleton 409
31.42.2 Applications of Product Class 42 in Organic Synthesis 410
Volume 39: Sulfur, Selenium, and Tellurium 426
39.18 Product Class 18: Alkaneselenols 426
39.18.2 Alkaneselenols 426
39.18.2.1 Synthesis of Alkaneselenols 426
39.18.2.1.1 Method 1: Reaction of Alkylating Agents with Alkali Metal Selenides 426
39.18.2.1.2 Method 2: Reduction of Dialkyl Diselenides and Alkyl Selenocyanates 427
39.18.2.1.2.1 Variation 1: Reduction of Dialkyl Diselenides Mediated by Trialkyltin Hydrides: A Radical Route 428
39.18.2.1.2.2 Variation 2: Reduction of Dialkyl Diselenides with Hydrides 429
39.18.2.1.2.3 Variation 3: Reduction of Dialkyl Diselenides with Zinc under Biphasic Conditions 429
39.18.2.1.2.4 Variation 4: Reduction of Selenocyanates 430
39.18.2.1.3 Method 3: Reduction of Elemental Selenium with Alkyl Grignard or Alkyllithium Compounds Followed by Protonation 432
39.18.2.2 Applications of Alkaneselenols in Organic Synthesis 432
39.18.2.2.1 Method 1: Oxidation: Synthesis of Diselenides 432
39.18.2.2.2 Method 2: Reaction with Alkyl and Aryl Halides 433
39.18.2.2.3 Method 3: Nucleophilic Substitution of Alcohols and Enol Ethers 434
39.18.2.2.4 Method 4: Synthesis of Diselenoacetals 436
39.18.2.2.4.1 Variation 1: Diselenoacetal Formation Using Selenols and Protic Acids 436
39.18.2.2.4.2 Variation 2: Diselenoacetal Formation Using Selenols and Lewis Acids 437
39.18.2.2.5 Method 5: Michael-Type Addition Reactions 438
39.19 Product Class 19: Acyclic Alkaneselenolates 442
39.19.1.2 Alkaneselenolates of Group 1, 2, and 13–15 Metals 442
39.19.1.2.1 Arsenic Alkaneselenolates 442
39.19.1.2.1.1 Method 1: Reaction of a 2-Arsapropene with Methaneselenol 442
39.19.1.2.2 Silicon Alkaneselenolates 442
39.19.1.2.2.1 Method 1: Reaction of a Lithium Silaneselenolate with an Alkyl Halide 443
39.19.1.2.3 Germanium Alkaneselenolates 444
39.19.1.2.3.1 Method 1: Reaction of Selenols with Halogermanes 444
39.19.1.2.4 Tin Alkaneselenolates 445
39.19.1.2.4.1 Method 1: Reaction of Alkaneselenolates Generated In Situ with Chlorostannanes 445
39.19.1.2.5 Lead Alkaneselenolates 445
39.19.1.2.5.1 Method 1: Reaction of Sodium Selenolates with Lead(II) Acetate 446
39.19.1.2.6 Boron Alkaneselenolates 446
39.19.1.2.6.1 Method 1: Reaction of a Lithium Trihydroborate with Titanocene Pentaselenide 446
39.19.1.2.7 Aluminum Alkaneselenolates 447
39.19.1.2.8 Indium Alkaneselenolates 447
39.19.1.2.8.1 Method 1: Reaction of Indium(I) Iodide with Diselenides 448
39.19.1.2.9 Magnesium Alkaneselenolates 448
39.19.1.2.9.1 Method 1: Reaction of Grignard Reagents with Elemental Selenium 448
39.19.1.2.10 Lithium Alkaneselenolates 449
39.19.1.2.10.1 Synthesis of Lithium Alkaneselenolates 449
39.19.1.2.10.1.1 Method 1: Reduction of Dialkyl Diselenides 449
39.19.1.2.10.1.2 Method 2: Insertion of Elemental Selenium into a C--Li Bond 450
39.19.1.2.10.1.3 Method 3: Reaction of Lithium Enolates with Elemental Selenium 451
39.19.1.2.10.2 Applications of Lithium Alkaneselenolates in Organic Synthesis 451
39.19.1.2.10.2.1 Method 1: Nucleophilic Substitution of Leaving Groups 451
39.19.1.2.10.2.2 Method 2: Hydroselenation of Alkynes 453
39.19.1.2.11 Sodium Alkaneselenolates 454
39.19.1.2.11.1 Synthesis of Sodium Alkaneselenolates 454
39.19.1.2.11.1.1 Method 1: Deprotonation of Selenols 454
39.19.1.2.11.1.2 Method 2: Reduction of Diselenides and Selenocyanates 454
39.19.1.2.11.2 Applications of Sodium Alkaneselenolates in Organic Synthesis 455
39.19.1.2.11.2.1 Method 1: Nucleophilic Substitution of Leaving Groups 455
39.19.1.2.11.2.2 Method 2: Ring Opening of Cyclopropanes 456
39.19.1.2.12 Potassium Alkaneselenolates 456
39.19.1.2.12.1 Method 1: Reduction of Dialkyl Diselenides Using Hydrazine Hydrate and Potassium Hydroxide 457
39.19.1.2.13 Cesium Alkaneselenolates 457
39.19.1.2.13.1 Method 1: Reaction of Acyl Selenides with Cesium Carbonate and Amines 457
Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines 462
40.1 Product Class 1: Amino Compounds 462
40.1.1.5.4.5 Substitution on the Amine Nitrogen 462
40.1.1.5.4.5.1 Dealkylation Reactions of Amines 462
40.1.1.5.4.5.1.1 Method 1: The von Braun Reaction with Cyanogen Bromide 462
40.1.1.5.4.5.1.2 Method 2: Photolytic Dealkylation 464
40.1.1.5.4.5.1.3 Method 3: Reductive Cleavage of the C--N Bond 469
40.1.1.5.4.5.1.4 Method 4: Sequential N-Demethylation–N-Acylation with Palladium(II) Acetate and Acetic Anhydride 471
40.1.1.5.4.5.1.5 Method 5: Cleavage of the C--N Bond Using Solid-Supported Reagents 473
40.1.1.5.4.5.1.6 Method 6: The Polonovski Reaction 475
40.1.1.5.4.5.1.7 Method 7: Reaction with Dialkyl Azodicarboxylates 479
40.1.1.5.4.5.2 Replacement of Oxygen Functionalities 479
40.1.1.5.4.5.2.1 Method 1: Reactions of Ammonia with Alcoholic Hydroxy Groups 480
40.1.1.5.4.5.2.2 Method 2: Reactions of Primary or Secondary Amines with Alcoholic Hydroxy Groups 483
40.1.1.5.4.5.2.3 Method 3: Direct Amination with Sulfonamides 489
40.1.1.5.4.5.3 Replacement of Nitrogen Functionalities 490
40.1.1.5.4.5.3.1 Method 1: Condensation of Primary Amines 491
Author Index 498
Abbreviations 528
List of All Volumes 534

Abstracts


1.1.5 Organometallic Complexes of Nickel


R. M. Stolley and J. Louie

This chapter is an update to the earlier Science of Synthesis contribution describing the organometallic complexes of nickel. This update highlights the applications of organometallic complexes of nickel, building on the general trends of organonickel chemistry described in the previous contribution. Within this update, particular emphasis is placed on nickel-mediated oxidative and reductive coupling reactions, carbon—heteroatom bond-forming reactions, annulation, and strong-bond activation reactions. This update focuses mainly on literature from 2003 to 2012.

Keywords: nickel · reductive coupling · oxidative coupling · heterocoupling · oxidative addition · homocoupling · cyclization · carbon—heteroatom bonds · allylic · alkyne · 1,3-dienes · C—H bond activation · insertion · isomerization · carboxylation

1.2.6 High-Valent Palladium in Catalysis


P. Chen, G. Liu, K. M. Engle, and J.-Q. Yu

This chapter documents recent studies of palladium-catalyzed organic transformations in which a high-valent palladium intermediate is involved in the formation of a new chemical bond. The interest in these reactions has focused mainly on C—H activation and the difunctionalization of alkenes.

Keywords: high-valent palladium complexes · C—H activation · alkenes · difunctionalization · oxidation · reductive elimination

4.4.5 Product Subclass 5: Disilanes and Oligosilanes


C. Marschner and J. Baumgartner

This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the preparation and synthetic use of disilanes. This update is extended by coverage of synthetically useful oligosilanes.

Keywords: silicon compounds · disilanes · oligosilanes · silylation · protecting groups · radicals · Si—Si bonds · Si—C bonds

4.4.9 Product Subclass 9: Silylzinc Reagents


A. Durand, I. Hemeon, and R. D. Singer

This chapter is a revision of the contribution on silylzinc reagents published in 2001, which describes the preparation and application of triorganosilylzinc compounds. Homo silylzinc reagents, such as bis(triphenylsilyl)zinc(II) [(Ph3Si)2Zn] and lithium tris[dimethyl(phenyl)silyl]zincate [(PhMe2Si)3ZnLi], as well as hetero or mixed silylzinc reagents, such as lithium [dimethyl(phenyl)silyl]dimethylzincate [(PhMe2Si)ZnMe2Li] and (biphenyl-2,2′-diolato)(tert-butyl)[dimethyl(phenyl)silyl]zincates {M2Zn(t-Bu)[(2-OC6H4)2](SiMe2Ph); M = Li, MgCl}, are prepared with relative ease and are utilized in a variety of synthetic applications. These reagents react under a variety of conditions with unsaturated organic substrates to afford synthetically useful triorganosilylated species.

Keywords: bis(triorganosilyl)zincs · dialkyl(triorganosilyl)zincates · dianionic silylzincates · catalysis · vinylsilanes · 3-(triorganosilyl) ketones · allylsilanes

4.4.21.13 Silylamines


A. Kawachi

This review, which updates the original Section 4.4.21, published in 2001, discusses the preparation of silylamines bearing dicoordinate, tricoordinate, tetracoordinate, and pentacoordinate silicon centers. Reaction of chlorosilanes with primary or secondary amines is one of the most conventional methods for the syntheses of these compounds. Reactions of halosilanes with lithium amides, lithium β-diketiminates, and other metalated nitrogen species are also useful. A more recent advance is the dehydrogenative condensation of hydrosilanes with primary or secondary amines using transition-metal or Lewis acid catalysts.

Keywords: silylamines · halosilanes · hydrosilanes · amines · diamines · amino alcohols · amides · dehydrogenative condensation · dehydrochlorination · transition-metal-catalyzed reactions

4.4.22 Product Subclass 22: Silyl Phosphines


M. Hayashi

This chapter is a revision of the earlier Science of Synthesis contribution, published in 2001, describing methods for the synthesis of silyl phosphines and their applications in organic synthesis. In contrast to the earlier contribution, in which the applications of silyl phosphines were described only very briefly, in this revision the applications of silyl phosphines are classified and summarized and include recent improvements, especially with regard to P—C bond formation.

Keywords: silyl phosphines · phosphines · phosphorus compounds · phosphaalkenes · phosphaalkynes · phosphorus heterocycles · silyl ethers

4.4.41.8 β-Silyl Carbonyl Compounds


F. Nahra and O. Riant

β-Silyl carbonyl or carboxy compounds are attractive synthetic intermediates. They are important building blocks for various synthetic transformations, thus allowing the construction of more complex molecules. The position of the silyl group far from the carbonyl group allows for numerous transformations on the latter, giving access in some cases to complex natural products. Moreover, the installation of the silyl group on these intermediates in an enantioselective manner has been the subject of numerous investigations, mainly due to its subsequent influence on the adjacent addition of other groups. Finally, the possibility of converting these silyl groups into various other functional groups renders these intermediates valuable tools in the organic chemist's arsenal.

Keywords: β-silyl carbonyl · silylmetalation · hydrosilylation · silyl migration · asymmetric addition

17.5.4 Seven-Membered Hetarenes with Two or More Heteroatoms


J. Zhang

This update deals with important general methods for the synthesis of diazepines, benzodiazepines, and dibenzodiazepines that have not been discussed in the earlier Science of Synthesis Section 17.5 or in Houben–Weyl, Vol. E 9d. Literature published up to 2011 is reviewed.

Keywords: diazepines · benzodiazepines · dibenzodiazepines · diazepinones · ring closure · condensation reactions · copper-catalyzed cyclization · palladium-catalyzed cyclization

18.1.7 Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes


J. Podlech

This chapter is an update to the earlier Science of Synthesis contribution on the preparation of cyanogen halides, cyanates, thiocyanates, sulfonyl cyanides, and cyanamides, as well as their application in organic synthesis. It focuses on the literature published in the period 2003–2012.

Keywords: cyanogen halides · thiocyanates · sulfonyl cyanides · cyanamides · cyanation · thiocyanation

18.11.10 Seleno- and Tellurocarbonic Acids and Derivatives


K. Shimada

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of seleno- and tellurocarbonic acids and their derivatives. It focuses on the literature published in the period 2002–2012.

Keywords: bis(dimethylaluminum) selenide · N,N-dialkylcyanamides · N,N-dimethylselenocarbamoyl chloride · elemental selenium · isoselenocyanates · potassium selenocyanate · selenocarbamates · selenosemicarbazides · selenosemicarbazones · selenoureas · sodium hydroselenide · Viehe's salt

31.42 Product Class 42: Arylphosphines and Derivatives


M. Stankevič and K. M. Pietrusiewicz

This manuscript is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of arylphosphines. Classical routes to arylphosphines involve the formation of the required C—P bonds from P-electrophilic, P-nucleophilic, and P-radical precursors. Newer methods are based on hydrophosphination and coupling processes catalyzed by transition-metal complexes. Methods involving reductions and decomplexations of tetracoordinate phosphorus precursors and modifications of the carbon skeleton in existing arylphosphines are also included.

Keywords: aryl compounds · C—P bonds · coupling reactions · deoxygenation · desulfurization · nucleophilic substitution · nucleophilic addition · phosphines · phosphorus compounds · radical addition · transition metals

39.18.2 Alkaneselenols


C. Santi

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkaneselenols. It focuses on the literature published in the period 2001–2012; some applications of alkaneselenols in organic synthesis are also...

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Alkaneselenolates • Alkaneselenols • Arylphosphines • b-Silyl Carbonyl Compounds • Carbonyl Compounds • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • Cyanamides • Cyanates • Cyanides • Cyanogen Halides • Derivatives • Disilanes • functional groups • High-Valent Palladium • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • Nickel • nickel complex • Nitrogen Substitution • Oligosilanes • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • organometallic complex • Palladium • Palladium Catalysis • Peptide synthesis • phosphaalkynes • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • selenium • Selenocarbonic Acids • Seven-Membered Hetarenes • Silylamines • Silyl Phosphines • Silylzinc Reagents • Sulfinyl Cyanides • Sulfonyl Cyanides • Sulfur • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • tellurium • Tellurocarbonic Acids
ISBN-10 3-13-198431-7 / 3131984317
ISBN-13 978-3-13-198431-9 / 9783131984319
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 13,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95