Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis Knowledge Updates 2012 Vol. 1 (eBook)

eBook Download: EPUB
2014 | 1. Auflage
562 Seiten
Thieme (Verlag)
978-3-13-178811-5 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2012 Vol. 1 -
Systemvoraussetzungen
2.799,99 inkl. MwSt
(CHF 2729,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that youalways have access to state-of-the-art synthetic methodology.

Content of this volume: Organometallic Complexes of Titanium, Silicon Compounds, Disilenes, Lithium Compounds, 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives, 1,2-Dithiins, Seven-Membered Hetarenes with One Heteroatom, Oxepins, Benzoxepins, Azepines, Cyclopentazepines, and Phosphorus Analogues, Three Carbon-Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives, Heteroatom Analogues of Aldehydes and Ketones.

Science of Synthesis: Knowledge Updates 2012/1 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 18
Table of Contents 20
Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) 38
2.10 Product Class 10: Organometallic Complexes of Titanium 38
2.10.19 Organometallic Complexes of Titanium (Update 1) 38
2.10.19.1 Titanium-Mediated Synthesis of Cyclopropyl Derivatives 38
2.10.19.1.1 Synthesis of Cyclopropanes without Heteroatom Substitution 39
2.10.19.1.1.1 Method 1: Synthesis from Thioacetals and Thioethers 39
2.10.19.1.1.2 Method 2: Synthesis from 1,1-Dihalides 44
2.10.19.1.2 Synthesis of Cyclopropanols 45
2.10.19.1.2.1 Synthesis from Carboxylic Acid Esters 45
2.10.19.1.2.1.1 Method 1: Use of Grignard Reagents without Ligand Exchange 45
2.10.19.1.2.1.2 Method 2: Use of Alkenes and Grignard Reagents 50
2.10.19.1.2.1.2.1 Variation 1: Bicyclo[n.1.0]alkan-1-ols from Unsaturated Carboxylic Acid Esters 50
2.10.19.1.2.1.2.2 Variation 2: 2-(Hydroxyalkyl)cyclopropanols from Unsaturated Carboxylic Acid Esters 53
2.10.19.1.2.1.2.3 Variation 3: Cyclopropanols from Carboxylic Acid Esters and Alkenes 54
2.10.19.1.2.2 Synthesis from Lactones and Other Acid Derivatives 57
2.10.19.1.2.2.1 Method 1: Synthesis from Lactones 57
2.10.19.1.2.2.2 Method 2: Synthesis from Other Acid Derivatives 58
2.10.19.1.3 Synthesis of Cyclopropanone Hemiacetals 59
2.10.19.1.3.1 Method 1: Synthesis from Cyclic Carbonates 59
2.10.19.1.4 Synthesis of Cyclopropylamines 60
2.10.19.1.4.1 Synthesis from Tertiary Amides 60
2.10.19.1.4.1.1 Method 1: Use of Grignard Reagents without Ligand Exchange 61
2.10.19.1.4.1.2 Method 2: Use of Organozinc Reagents without Ligand Exchange 65
2.10.19.1.4.1.3 Method 3: Use of Alkenes and Grignard Reagents 65
2.10.19.1.4.1.3.1 Variation 1: Bicyclo[n.1.0]alkan-1-amine Derivatives from Unsaturated Carboxylic Amides 66
2.10.19.1.4.1.3.2 Variation 2: 2-Azabicyclo[n.1.0]alkane Derivatives from Unsaturated Carboxylic Amides 68
2.10.19.1.4.1.3.3 Variation 3: Cyclopropylamines from Tertiary Amides and Alkenes 69
2.10.19.1.4.2 Synthesis from Nitriles 72
2.10.19.1.4.2.1 Method 1: Use of Grignard Reagents without Ligand Exchange 72
2.10.19.1.4.2.1.1 Variation 1: Alkylcyclopropylamines from Aliphatic Nitriles 72
2.10.19.1.4.2.1.2 Variation 2: 1-Aryl- and 1-Alkenylcyclopropylamines from Unsaturated Nitriles 78
2.10.19.1.4.2.2 Method 2: Use of Alkenes and Grignard Reagents 80
2.10.19.1.4.2.2.1 Variation 1: Bicyclic Cyclopropylamines from Unsaturated Nitriles 80
2.10.19.1.4.2.2.2 Variation 2: Cyclopropylamines from Nitriles and Alkenes 81
2.10.19.1.4.3 Synthesis from Imides 82
2.10.19.1.4.3.1 Method 1: Synthesis from Formimides or Cyclic Imides 82
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 88
4.4 Product Class 4: Silicon Compounds 88
4.4.1 Product Subclass 1: Disilenes 88
Synthesis of Product Subclass 1 90
4.4.1.1 Method 1: Synthesis of Acyclic Disilenes 90
4.4.1.1.1 Variation 1: Photolysis of Linear Trisilanes 90
4.4.1.1.2 Variation 2: Photolysis of Cyclotrisilanes 91
4.4.1.1.3 Variation 3: Reductive Dehalogenation of 1,1-Dihalosilanes 91
4.4.1.1.4 Variation 4: Reductive Dehalogenation of 1,2-Dihalodisilanes 94
4.4.1.1.5 Variation 5: Coupling of a 1,1-Dilithiosilane with Dihalosilanes 94
4.4.1.1.6 Variation 6: Coupling of Alkali Metal Disilenides with Electrophiles 95
4.4.1.1.7 Variation 7: Addition to Disilynes 97
4.4.1.1.8 Variation 8: Other Methods 97
4.4.1.2 Method 2: Synthesis of Tetrasilabutadienes 99
4.4.1.3 Method 3: Synthesis of Cyclic Disilenes 100
Volume 8: Compounds of Group 1 (Li···Cs) 106
8.1 Product Class 1: Lithium Compounds 106
8.1.31 Functionalized Organolithiums by Ring Opening of Heterocycles 106
8.1.31.1 Three-Membered Heterocycles 107
8.1.31.1.1 Method 1: Oxiranes 107
8.1.31.1.2 Method 2: Aziridines 112
8.1.31.2 Four-Membered Heterocycles 114
8.1.31.2.1 Method 1: Oxetanes 114
8.1.31.2.2 Method 2: Azetidines 118
8.1.31.2.3 Method 3: Thietanes 119
8.1.31.3 Five-Membered Heterocycles 119
8.1.31.3.1 Method 1: Oxygen-Containing Compounds 121
8.1.31.3.1.1 Variation 1: Tetrahydrofurans 121
8.1.31.3.1.2 Variation 2: Dioxolanes and Oxazolidines 122
8.1.31.3.1.3 Variation 3: Benzo[b]furans 126
8.1.31.3.1.4 Variation 4: Phthalans 128
8.1.31.3.2 Method 2: Nitrogen-Containing Compounds: Pyrrolidines 131
8.1.31.3.3 Method 3: Sulfur-Containing Compounds 133
8.1.31.4 Six-Membered Heterocycles 134
8.1.31.4.1 Method 1: Oxygen-Containing Compounds 134
8.1.31.4.1.1 Variation 1: Saturated Oxygen-Containing Heterocycles 134
8.1.31.4.1.2 Variation 2: 1-Benzopyrans 135
8.1.31.4.1.3 Variation 3: 2-Benzopyrans 137
8.1.31.4.2 Method 2: Nitrogen-Containing Compounds: Tetrahydroisoquinolines 138
8.1.31.4.3 Method 3: Sulfur-Containing Compounds 140
8.1.31.5 Seven-Membered Heterocycles 141
8.1.31.5.1 Method 1: Dibenzo Oxygen-, Nitrogen-, and Sulfur-Containing Seven-Membered Heterocycles 141
8.1.31.5.2 Method 2: Dinaphtho Oxygen- and Sulfur-Containing Seven-Membered Heterocycles 143
8.1.31.6 Other Heterocycles 144
8.1.31.6.1 Method 1: Benzodioxins, Benzoxathiins, Dihydrobenzodioxepins, and Dihydronaphthodioxocins 144
8.1.31.6.2 Method 2: Phenoxathiin, Phenothiazine, and Thianthrene 147
8.1.32 Syntheses Mediated by a-Lithiated Epoxides and Aziridines 152
8.1.32.1 Oxiranyllithiums 152
8.1.32.1.1 2-Alkyl-Substituted Oxiranyllithiums 153
8.1.32.1.1.1 Method 1: Reactions with Electrophiles 153
8.1.32.1.1.1.1 Variation 1: Stereospecific Trapping 153
8.1.32.1.1.1.2 Variation 2: Asymmetric Lithiation and Trapping of meso-Oxiranes 154
8.1.32.1.1.1.3 Variation 3: Coupling with Boronic Esters: Synthesis of Polyoxygenated Compounds 155
8.1.32.1.1.2 Method 2: Enantioselective a-Deprotonation–Rearrangement of meso-Oxiranes 156
8.1.32.1.1.2.1 Variation 1: Synthesis of Bicyclic Alcohols by Transannular C--H Insertion 156
8.1.32.1.1.2.2 Variation 2: Synthesis of (–)-Xialenon 157
8.1.32.1.1.2.3 Variation 3: Effect of Lewis Acids on Transannular C--H Insertion Reactions 157
8.1.32.1.1.2.4 Variation 4: Enantioselective Rearrangement of exo-Norbornene Oxide to Nortricyclanol 158
8.1.32.1.1.2.5 Variation 5: Transannular C--H Insertion in Lithiated 7-(tert-Butoxycarbonyl)-7-azanorbornene Oxide 159
8.1.32.1.1.3 Method 3: Construction of Nitrogen-Containing Heterocyclic Compounds by Desymmetrization of meso-Epoxides 160
8.1.32.1.1.4 Method 4: Synthesis of Alkenes by Reductive Alkylation 161
8.1.32.1.1.4.1 Variation 1: Synthesis of Enantioenriched Unsaturated Diols 162
8.1.32.1.1.4.2 Variation 2: Synthesis of Enamines from Terminal Epoxides 163
8.1.32.1.1.5 Method 5: Intramolecular Cyclopropanation of Unsaturated Terminal Epoxides (C==C Insertion) 164
8.1.32.1.1.5.1 Variation 1: Stereospecific Synthesis of Bicyclic Alcohols 164
8.1.32.1.1.5.2 Variation 2: Synthesis of (–)-Sabina Ketone 165
8.1.32.1.1.6 Method 6: Isomerization of a-Lithiated Epoxides to Ketones: 1,2-Hydrogen Migration 166
8.1.32.1.2 2-Aryl-Substituted Oxiranyllithiums 167
8.1.32.1.2.1 Method 1: Reactions of 2-Phenyloxiran-2-yllithiums 167
8.1.32.1.2.1.1 Variation 1: Stereospecific Trapping with Electrophiles 167
8.1.32.1.2.1.2 Variation 2: Stereoselective Synthesis of Antifungal Agents 168
8.1.32.1.2.2 Method 2: Reactions of 3-Substituted 2-Phenyloxiran-2-yllithiums 169
8.1.32.1.2.2.1 Variation 1: Of 3-Methyl-2-phenyloxiran-2-yllithiums 169
8.1.32.1.2.2.2 Variation 2: Of 2-Lithiated 2,3-Diphenyloxiranes 169
8.1.32.1.2.3 Method 3: Reactions of 2-Aryloxiran-2-yllithiums 171
8.1.32.1.2.4 Method 4: Stereoselective Synthesis of Cyclopropanes 173
8.1.32.1.2.5 Method 5: Stereoselective Synthesis of ß,.-Epoxyhydroxylamines and 4-(Hydroxyalkyl)-1,2-oxazetidines 174
8.1.32.1.2.6 Method 6: Stereocontrolled Synthesis of 1,2-Diols by Homologation of Boronic Esters with Lithiated 2-Phenyloxirane 175
8.1.32.1.2.7 Method 7: Oxiranyl Anion Methodology Using Microflow Systems 177
8.1.32.1.3 Lithiated Dihydrooxazol-2-yloxiranes 178
8.1.32.1.3.1 Method 1: Reactions of 2-Lithiated 2-(4,5-Dihydrooxazol-2-yl)oxiranes 178
8.1.32.1.3.1.1 Variation 1: Configurational Stability of a-Lithiated (4,5-Dihydrooxazol-2-yl)oxiranes: Trapping with Electrophiles 178
8.1.32.1.3.1.2 Variation 2: Synthesis of 2-Acyldihydrooxazoles 179
8.1.32.1.3.1.3 Variation 3: Synthesis of Cyclopropane-Fused .-Lactones 180
8.1.32.1.3.1.4 Variation 4: Synthesis of a-Epoxy-ß-amino Acids 181
8.1.32.1.3.2 Method 2: Reactions of 2-Lithiated 3-(4,5-Dihydrooxazol-2-yl)oxiranes 184
8.1.32.1.3.2.1 Variation 1: Configurational Stability of 2-Lithiated 3-(4,5-Dihydrooxazol-2-yl)oxiranes: Trapping with Electrophiles 184
8.1.32.1.3.2.2 Variation 2: Synthesis of a,ß-Epoxy-.-butyrolactones 185
8.1.32.1.3.2.3 Variation 3: Synthesis of a,ß-Epoxy-.-amino Acids and a,ß-Epoxy-.-butyrolactams 186
8.1.32.1.3.3 Method 3: 2-Lithiation of Terminal 3-(4,5-Dihydrooxazol-2-yl)oxiranes 189
8.1.32.1.4 2-Trifluoromethyl-Stabilized Oxiranyllithium 190
8.1.32.1.4.1 Method 1: 2-(Trifluoromethyl)oxiranyllithium: Stereospecific Trapping with Electrophiles 190
8.1.32.1.4.2 Method 2: 2-(Trifluoromethyl)oxiranyllithium as Precursor of the Oxiranylzinc 190
8.1.32.1.5 Lactone-Derived Oxiranyllithiums 191
8.1.32.1.5.1 Method 1: Reactions of Oxiranyllithiums Derived from a,ß-Epoxy-.-butyrolactones 191
8.1.32.1.6 Silyloxiranyllithiums 193
8.1.32.1.6.1 Method 1: Lithiation of 3-Vinyloxiran-2-ylsilanes 193
8.1.32.1.6.2 Method 2: Lithiation of 3-Alkyloxiran-2-ylsilanes 194
8.1.32.1.7 2-Sulfonyloxiranyllithiums 195
8.1.32.1.7.1 Method 1: 2-Sulfonyloxiranyllithiums: Configurational Stability and Trapping with Electrophiles 195
8.1.32.1.7.2 Method 2: Construction of Polycyclic Ethers 196
8.1.32.1.8 2-Lithiated 2-(Benzotriazol-1-yl)oxiranes 198
8.1.32.1.8.1 Method 1: Synthesis of 2-(Benzotriazol-1-yl)oxiranyllithiums with Subsequent Trapping 198
8.1.32.1.9 2-Lithiated 2-(Benzothiazol-2-yl)oxiranes 198
8.1.32.1.9.1 Method 1: Synthesis of 2-(Benzothiazol-2-yl)oxiranyllithiums with Subsequent Trapping 198
8.1.32.1.10 Oxiranyllithiums by Transmetalation 200
8.1.32.1.10.1 Method 1: Lithium–Tin Transmetalation 200
8.1.32.1.10.2 Method 2: Lithium–Aluminum and Lithium–Zirconium Transmetalation 200
8.1.32.1.10.2.1 Variation 1: Synthesis of Alkylated (Triphenylsilyl)alkenes: Reaction of a 2-Lithiated 2-(Triphenylsilyl)oxirane with Organoaluminum Reagents 200
8.1.32.1.10.2.2 Variation 2: Insertion of Metalated Epoxides into Zirconacycles 201
8.1.32.1.10.2.3 Variation 3: Insertion of Metalated Epoxynitriles into Chlorobis(.5-cyclopentadienyl)organozirconium Reagents 202
8.1.32.1.10.2.4 Variation 4: Insertion of 2-Lithiated 2-(Phenylsulfonyl)oxiranes into Alkenylchlorobis(.5-cyclopentadienyl)zirconium Reagents 203
8.1.32.1.11 Remotely Stabilized Lithiated Epoxides 205
8.1.32.1.11.1 Method 1: Remotely Stabilized Lithiated Epoxides: Reactions with Aldehydes 205
8.1.32.1.11.2 Method 2: Synthesis of Xylobovide 206
8.1.32.2 a-Lithiated Aziridines 207
8.1.32.2.1 Lithiation–Trapping Sequence of Aziridines with an Electron-Withdrawing Group at the Carbon Atom 208
8.1.32.2.1.1 Method 1: Synthesis of 1-Alkylaziridine-2-carboxylates 208
8.1.32.2.1.2 Method 2: Synthesis of 1-Alkylaziridine-2-carbothioates 209
8.1.32.2.1.3 Method 3: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Phenylaziridines 210
8.1.32.2.1.4 Method 4: Reactions of 2,3-Dihetaryl-Substituted 1-Phenylaziridines 211
8.1.32.2.1.5 Method 5: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Tritylaziridines 213
8.1.32.2.1.5.1 Variation 1: Synthesis of N-Tritylepimino-.-butyrolactones 214
8.1.32.2.1.6 Method 6: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Benzylaziridines 215
8.1.32.2.1.7 Method 7: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-(1-Phenylethyl)aziridines 216
8.1.32.2.1.8 Method 8: Synthesis of C-Substituted 1-Phenyl-2-sulfonylaziridines 218
8.1.32.2.2 Lithiation of Aziridines with an Electron-Withdrawing Group at Nitrogen 219
8.1.32.2.2.1 Method 1: C-Alkylation of 1-(tert-Butylsulfonyl)-2-phenylaziridine 219
8.1.32.2.2.1.1 Variation 1: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)-2-phenylaziridines Using Microreactor Technology 220
8.1.32.2.2.1.2 Variation 2: Synthesis of (tert-Butylsulfonyl)amino Alcohols 221
8.1.32.2.2.2 Method 2: Synthesis of 2-Alkyl-Substituted 1-(tert-Butylsulfonyl)-3-(trimethylsilyl)aziridines 222
8.1.32.2.2.3 Method 3: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)aziridines 223
8.1.32.2.2.3.1 Variation 1: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)aziridines Using Microreactor Technology 224
8.1.32.2.2.4 Method 4: Synthesis of trans-2,3-Disubstituted 1-(tert-Butylsulfonyl)aziridines 225
8.1.32.2.2.5 Method 5: Synthesis of C-Substituted 1-(2,4,6-Triisopropylphenylsulfonyl)aziridines 226
8.1.32.2.2.6 Method 6: Reductive Alkylation (or Alkylative Ring Opening) of 1-Sulfonylaziridinyllithiums 228
8.1.32.2.2.6.1 Variation 1: Synthesis of Allylic Sulfonamides 228
8.1.32.2.2.6.2 Variation 2: Synthesis of Alkynylamines 230
8.1.32.2.2.6.3 Variation 3: Allylic Amino Alcohols and Amino Ethers by Organolithium-Induced Alkylative Ring Opening of 1-Sulfonyl-Protected Aziridinyl Ethers 232
8.1.32.2.2.6.4 Variation 4: Allylic Amino Alcohols and Amino Ethers by Organolithium-Induced Alkylative Ring Opening of 1,4-Dimethoxybut-2-ene-Derived Aziridines 233
8.1.32.2.2.7 Method 7: Eliminative Dimerization of Lithiated 1-(tert-Butylsulfonyl)-aziridines 234
8.1.32.2.2.7.1 Variation 1: Synthesis of 2-Ene-1,4-diamines 234
8.1.32.2.2.8 Method 8: Intramolecular Cyclopropanation of Lithiated 1-(tert-Butylsulfonyl)aziridines 235
8.1.32.2.2.8.1 Variation 1: Synthesis of 2-Aminobicyclo[3.1.0]hexanes 235
8.1.32.2.2.9 Method 9: Lithiation of 1-(tert-Butoxycarbonyl)aziridines 237
8.1.32.2.2.9.1 Variation 1: Synthesis of 2-Silylaziridines 237
8.1.32.2.2.9.2 Variation 2: Synthesis of trans-Configured Aziridine-2-carboxylates 237
8.1.32.2.2.9.3 Variation 3: Synthesis of trans-Configured Aziridin-2-ylphosphonates 239
8.1.32.2.2.9.4 Variation 4: Synthesis of N-tert-Butoxycarbonyl 1,2-Amino Alcohols 239
8.1.32.2.3 Lithiation of Aziridines with an Electron-Donating Group on Nitrogen 241
8.1.32.2.3.1 Method 1: Synthesis of cis- and trans-Configured C-Substituted 1-Alkyl-2,3-diphenylaziridines 241
8.1.32.2.3.2 Method 2: Synthesis of C-Substituted 1-Alkyl-2-methyleneaziridines 242
8.1.32.2.3.2.1 Variation 1: Synthesis of Chiral Nonracemic C-Substituted 1-Alkyl-2-methyleneaziridines 243
8.1.32.2.3.3 Method 3: Synthesis of C-Substituted Aziridine–Borane Complexes 244
8.1.32.2.3.3.1 Variation 1: Of 1-[2-(tert-Butyldimethylsiloxy)ethyl]aziridine–Borane Complexes 244
8.1.32.2.3.3.2 Variation 2: Of 1-Alkyl-2-phenylaziridine–Borane Complexes 246
8.1.33 Transition-Metal-Catalyzed Carbon--Carbon Bond Formation with Organolithiums 252
8.1.33.1 Copper-Catalyzed Reactions 252
8.1.33.1.1 Method 1: Copper-Catalyzed Conjugate Addition 253
8.1.33.1.2 Method 2: Copper-Catalyzed Alkylation 254
8.1.33.1.2.1 Variation 1: Copper-Catalyzed Asymmetric Allylation 254
8.1.33.1.3 Method 3: Copper-Catalyzed Coupling of Organolithium Reagents with a-Lithiated Cyclic Enol Ethers 256
8.1.33.2 Palladium-Catalyzed Reactions 256
8.1.33.2.1 Method 1: Palladium-Catalyzed Cross-Coupling Reactions with Aryl and Vinyl Halides 257
8.1.33.2.2 Method 2: Palladium-Catalyzed Coupling Reaction of Aryllithium Reagents with 1-Bromo-2-methylbut-3-en-2-ol 258
8.1.33.3 Iron-Catalyzed Reactions 259
8.1.33.3.1 Method 1: Iron-Catalyzed Cross-Coupling Reactions 259
8.1.33.3.2 Method 2: Iron-Catalyzed Carbolithiation of Alkynes 260
Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms 264
16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives 264
16.2.4 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives 264
16.2.4.1 Synthesis by Ring-Closure Reactions 264
16.2.4.1.1 By Formation of Two O--C Bonds 264
16.2.4.1.1.1 Fragments O--C--C--O and C--C 264
16.2.4.1.1.1.1 Method 1: Dibenzo[b,e][1,4]dioxins by Base-Induced Coupling of Benzene-1,2-diols with Activated Fluorobenzenes 264
16.2.4.1.1.2 Fragments O--C--C and O--C--C 266
16.2.4.1.1.2.1 Method 1: Substituted 1,4-Dioxins by Reaction of Methyl 3-Chloro-2-oxo-3-phenylpropanoate with Potassium Phthalimide or Sodium Imidazolide 266
16.2.4.1.2 By Formation of One C--C Bond 267
16.2.4.1.2.1 Fragment C--O--C--C--O--C 267
16.2.4.1.2.1.1 Method 1: 1,4-Benzodioxins by Ring-Closing Metathesis of Divinyl Ethers 267
16.2.4.2 Aromatization 268
16.2.4.2.1 Method 1: 1,4-Benzodioxins by Isomerization of Exocyclic Alkenes 268
16.2.4.2.2 Method 2: Dibenzo[b,e][1,4]dioxins from the Diels–Alder Reactions of 1,4-Benzodioxin and Benzo[b]furo[3,4-e][1,4]dioxins 269
16.2.4.3 Synthesis by Substituent Modification 272
16.2.4.3.1 Substitution of Existing Substituents 272
16.2.4.3.1.1 Of Hydrogen 272
16.2.4.3.1.1.1 Method 1: Vilsmeier Reaction of 2-Phenyl-1,4-benzodioxin 272
16.2.4.3.1.1.2 Method 2: Diels–Alder Reaction of 2,2'-Bi-1,4-benzodioxin 272
16.2.4.3.1.2 Of Metals 273
16.2.4.3.1.2.1 Method 1: Stille Coupling of 2-(Trimethylstannyl)-1,4-benzodioxin with a Bromoalkene 273
16.2.4.3.1.3 Of Halogens 275
16.2.4.3.1.3.1 Method 1: Alkylation of 2-Bromo-1,4-benzodioxin by Lithium–Halogen Exchange 275
16.2.4.3.2 Modification of Substituents 275
16.2.4.3.2.1 Method 1: Alkylation of 1,4-Benzodioxin-6,7-dicarbaldehyde 275
16.3 Product Class 3: 1,2-Dithiins 278
16.3.5 1,2-Dithiins 278
16.3.5.1 Synthesis by Ring-Closure Reactions 281
16.3.5.1.1 By Formation of One S--S and Two S--C Bonds 281
16.3.5.1.1.1 Fragment C--C--C--C and Two S Fragments 281
16.3.5.1.1.1.1 Method 1: Addition of Sulfur to 6-Nitroperylo[1,12-bcd]thiophene 281
16.3.5.1.1.1.2 Method 2: Addition of Sulfur to 2-(Trimethylsiloxy)buta-1,3-diene 281
16.3.5.1.2 By Formation of One S--S and One S--C Bond 282
16.3.5.1.2.1 Fragments S--C--C--C--C and S 282
16.3.5.1.2.1.1 Method 1: Reaction of 2-(2-Phenylvinyl)-3-vinylthiirane Promoted by Acetonitrile(pentacarbonyl)tungsten(0) 282
16.3.5.1.3 By Formation of One S--S and One C--C Bond 282
16.3.5.1.3.1 Fragments S--C--C--C and S--C 282
16.3.5.1.3.1.1 Method 1: Thermal Dimerization of a,ß-Unsaturated ß-Arylsulfanyl Thioketones 282
16.3.5.1.3.1.2 Method 2: Cobalt(II)-Mediated Dimerization of a,ß-Unsaturated Thioacylsilanes 283
16.3.5.1.3.1.3 Method 3: Dimerization via Diels–Alder Reaction of Thioaldehydes 283
16.3.5.1.3.2 Fragments S--C--C and S--C--C 284
16.3.5.1.3.2.1 Method 1: Thionation–Dimerization of 1,3-Dihydro-2H-indol-2-one 284
16.3.5.1.3.2.2 Method 2: Manganese(IV) Oxide Promoted Oxidative Dimerization 285
16.3.5.1.4 By Formation of One S--S Bond 285
16.3.5.1.4.1 Fragment S--C--C--C--C--S 285
16.3.5.1.4.1.1 Method 1: Polycyclization of Diynes 285
16.3.5.1.4.1.2 Method 2: N-Bromosuccinimide-Induced Ring Formation 286
16.3.5.1.4.1.3 Method 3: Cyclization of Dibromides Promoted by Phase-Transfer Catalysts 287
16.3.5.1.4.1.4 Method 4: Cyclization of Dichlorides by Tandem Michael–Nucleophilic Substitution Processes 288
16.3.5.1.5 By Formation of One C--C Bond 289
16.3.5.1.5.1 Fragment C--C--S--S--C--C 289
16.3.5.1.5.1.1 Method 1: Cyclization via Ring-Closing Metathesis of Alkenes 289
16.3.5.2 Synthesis by Ring Transformation 289
16.3.5.2.1 Method 1: Ring Contraction Promoted by Photolysis 289
16.3.5.3 Synthesis by Other Methods 290
16.3.5.3.1 Method 1: Rearrangement Promoted by Photolysis 290
16.3.5.4 Applications of 1,2-Dithiins in Organic Synthesis 290
16.3.5.4.1 Reaction with Transition Metals 291
16.3.5.4.1.1 Method 1: Reaction with Organometallic Complexes 291
16.3.5.4.1.2 Method 2: Reaction with Copper Metal 292
16.3.5.4.2 Reaction with Lewis Acids 292
16.3.5.4.2.1 Method 1: Reaction Promoted by Aluminum Trichloride 292
16.3.5.4.2.2 Method 2: Reaction Promoted by Boron Trifluoride 293
16.3.5.4.3 Reaction with Diazo Compounds 294
16.3.5.4.3.1 Method 1: Reaction Promoted by Rhodium(II) Acetate 294
16.3.5.4.3.2 Method 2: Reaction Promoted by Copper(I) Chloride 295
16.3.5.4.4 Reaction with Alkynes 296
16.3.5.4.4.1 Method 1: Reaction Promoted by Bis(acetylacetonato)nickel(II) 296
16.3.5.4.5 Reaction with Enzymes 297
16.3.5.4.5.1 Method 1: Reaction with a Toluene Dioxygenase 297
Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles 300
17.4 Product Class 4: Seven-Membered Hetarenes with One Heteroatom 300
17.4.1.5 Oxepins 300
17.4.1.5.1 Synthesis by Ring-Closure Reactions 300
17.4.1.5.1.1 By Formation of One O--C and One C--C Bond 300
17.4.1.5.1.1.1 Method 1: From a 3-(Dimethylamino)-1-phenylprop-2-en-1-one and Arylidenemalononitriles 300
17.4.1.5.2 Synthesis by Ring Transformation 300
17.4.1.5.2.1 Method 1: By Valence Isomerization of 3-Oxaquadricyclanes 300
17.4.1.5.2.2 Method 2: By Valence Isomerization of 7-Oxanorbornadienes 301
17.4.1.5.2.3 Method 3: By Ring Enlargement of Furans with Diethyl Acetylenedicarboxylate 302
17.4.1.5.2.4 Method 4: By Valence Isomerization of Benzene Oxide 302
17.4.1.5.2.5 Method 5: By Ring Enlargement of a 2-[(Prop-2-ynyloxy)methyl]furan 303
17.4.1.5.2.6 Method 6: By Ring Enlargement of a Cyclohexa-2,5-diene-1,4-diol via SN2' Reaction 304
17.4.1.5.3 Aromatization 304
17.4.1.5.3.1 Method 1: By Dehydrogenation 304
17.4.2.5 Benzoxepins 308
17.4.2.5.1 Synthesis by Ring-Closure Reactions 308
17.4.2.5.1.1 By Formation of One O--C and Two C--C Bonds 308
17.4.2.5.1.1.1 Method 1: From a Betaine and Diethyl Acetylenedicarboxylate 308
17.4.2.5.1.2 By Formation of One O--C and One C--C Bond 308
17.4.2.5.1.2.1 Method 1: From Dinitrotoluenes and Salicylaldehydes 308
17.4.2.5.1.3 By Formation of Two C--C Bonds 310
17.4.2.5.1.3.1 Method 1: By Annulation of a Boronic Acid with Dimethyl Acetylenedicarboxylate 310
17.4.2.5.1.4 By Formation of One O--C Bond 311
17.4.2.5.1.4.1 Method 1: From 2-Alkyl-3-[2-(iodoethynyl)phenyl]oxiranes 311
17.4.2.5.1.4.2 Method 2: By Cyclization of 2-[2-(2-Bromophenyl)vinyl]phenols and Related Compounds 312
17.4.2.5.1.5 By Formation of One C--C Bond 314
17.4.2.5.1.5.1 Method 1: By Base-Catalyzed Cyclocondensation of Methyl (2E)-4-(2-Formylphenoxy)but-2-enoate 314
17.4.2.5.2 Synthesis by Ring Transformation 315
17.4.2.5.2.1 By Ring Enlargement 315
17.4.2.5.2.1.1 Method 1: Of a Benzofuran with 1-Phenyl-2-tosylacetylene 315
17.4.2.5.2.1.2 Method 2: Of Xanthenes by Dehydration 315
17.4.2.5.2.1.3 Method 3: Of 2-Diazo-3',6'-bis(diethylamino)spiro[indene-1,9'-xanthen]-3(2H)-one (Rhodamine BBN) 317
17.4.2.5.2.1.4 Method 4: Of a Dihydrofuran by Rearrangement 318
17.4.2.5.2.1.5 Method 5: Of Tetrahydrobenzo[b]cyclopropa[e]pyran-1-carboxylates 319
17.4.2.5.3 Synthesis by Substituent Modification 320
17.4.2.5.3.1 Substitution of Existing Substituents 320
17.4.2.5.3.1.1 Method 1: Condensation of Dibenz[b,f]oxepin-10(11H)-one with 3-Methylbut-2-enal 320
17.4.2.5.3.1.2 Method 2: Vilsmeier-Type Chloroformylation of Dibenz[b,f]oxepin-10(11H)-ones 320
17.4.2.5.3.1.3 Method 3: Reaction of Dibenz[b,f]oxepin-10(11H)-one with Base and Carbon Disulfide/Iodomethane or Dimethyl Trithiocarbonate Annulation of the Products
17.4.2.5.3.1.4 Method 4: 1H-Dibenz[2,3:6,7]oxepino[4,5-b]pyrroles by Annulation of 11-(Hydrazonoethylidene)dibenz[b,f]oxepin-10-ones 327
17.4.2.5.3.1.5 Method 5: 1H-Dibenz[2,3:6,7]oxepino[4,5-d]imidazoles by Oxidation/Annulation of Dibenz[b,f]oxepin-10(11H)-ones 328
17.4.5.5 Azepines, Cyclopentazepines, and Phosphorus Analogues 332
17.4.5.5.1 Synthesis by Ring-Closure Reactions 332
17.4.5.5.1.1 By Formation of One C--C Bond 332
17.4.5.5.1.1.1 Method 1: Azepine Formation via Copper-Mediated Cyclization of 2-Azahepta-2,4-dien-6-ynyl Anions 332
17.4.5.5.1.1.2 Method 2: 3H-Azepines via Deprotonation of 2-Aza-1,3,5-trienes 333
17.4.5.5.2 Synthesis by Ring Transformation 334
17.4.5.5.2.1 By Ring Enlargement 334
17.4.5.5.2.1.1 Of Five-Membered Heterocycles 334
17.4.5.5.2.1.1.1 Method 1: Thermal Isomerization of 3-Azaquadricyclanes 334
17.4.5.5.2.1.1.1.1 Variation 1: Thermal Isomerization of a Cyclobutane 3-Azaquadricyclane 334
17.4.5.5.2.1.2 Of Six-Membered Arenes 335
17.4.5.5.2.1.2.1 Method 1: Intramolecular Insertion of Arylnitrenes 335
17.4.5.5.2.1.2.1.1 Variation 1: Photolytic Decomposition of Aryl Azides 335
17.4.5.5.2.1.2.1.2 Variation 2: Rearrangement of Nitroarenes 337
17.4.5.5.3 Synthesis by Substituent Modification 338
17.4.5.5.3.1 Substitution of Existing Substituents 338
17.4.5.5.3.1.1 Of Hydrogen 338
17.4.5.5.3.1.1.1 Method 1: Tautomerization 338
17.4.5.5.3.1.1.1.1 Variation 1: Rearrangement of 2H- to 3H-Azepines 338
17.4.5.5.3.1.1.2 Method 2: C-Halogenation 339
17.4.5.5.3.1.1.2.1 Variation 1: C-Halogenation with N-Bromosuccinimide 339
17.4.5.5.3.1.1.3 Method 3: C-Alkylsulfanylation 339
17.4.5.5.3.1.1.4 Method 4: C-Amination 340
17.4.5.5.3.1.1.5 Method 5: C-Alkoxylation 341
17.4.5.5.3.1.2 Of Heteroatoms 342
17.4.5.5.3.1.2.1 Method 1: Of Alkoxy Groups 342
17.4.5.5.3.1.2.1.1 Variation 1: Of Activated Organooxy Groups 344
17.4.6.10 Benzazepines and Their Group 15 Analogues 348
17.4.6.10.1 1H-1-Benzazepines 349
17.4.6.10.1.1 Synthesis by Ring-Closure Reactions 349
17.4.6.10.1.1.1 By Formation of Two C--C Bonds and One C--N Bond 349
17.4.6.10.1.1.1.1 Method 1: By Condensation between 2-Fluoroaniline and Aryl Methyl Ketones 349
17.4.6.10.1.1.2 By Formation of One N--C and One C--C Bond 349
17.4.6.10.1.1.2.1 Method 1: From 5-[(E)-(2-Dimethylamino)vinyl]-2,1,3-benzoselenadiazol-4-amine 349
17.4.6.10.1.1.3 By Formation of Two C--C Bonds 350
17.4.6.10.1.1.3.1 Method 1: By Thermal Cycloaddition of Dimethyl Acetylenedicarboxylate with Methylindoles 350
17.4.6.10.1.1.3.2 Method 2: From the Reaction of Phosphonium Ylides 351
17.4.6.10.1.1.4 By Formation of One C--N Bond 353
17.4.6.10.1.1.4.1 Method 1: By Intramolecular Addition of Anilines 353
17.4.6.10.1.2 Synthesis by Ring Transformation 355
17.4.6.10.1.2.1 By Ring Enlargement 355
17.4.6.10.1.2.1.1 Method 1: By Ring Expansion of Activated Quinolines 355
17.4.6.10.2 2-Benzazepines 356
17.4.6.10.2.1 Synthesis by Ring-Closure Reactions 356
17.4.6.10.2.1.1 By Formation of One N--C and One C--C Bond 356
17.4.6.10.2.1.1.1 Method 1: By a Tandem Ritter/Houben–Hoesch Process 356
17.4.6.10.2.1.1.2 Method 2: By Reaction of 4-Chloro-2-oxo-2H-1-benzopyran-3-carbaldehyde with Benzylamines 357
17.4.6.10.2.1.2 By Formation of One C--C Bond 359
17.4.6.10.2.1.2.1 Method 1: By Cyclization of 2-Azahepta-2,4-dien-6-ynyls 359
17.4.6.10.3 5H-Dibenz[b,d]azepines 360
17.4.6.10.3.1 Synthesis by Substituent Modification 360
17.4.6.10.3.1.1 Method 1: By Rhodium-Catalyzed Decarbonylative Cycloaddition 360
17.4.6.10.4 11H-Dibenz[b,e]azepines 361
17.4.6.10.4.1 Synthesis by Ring-Closure Reactions 361
17.4.6.10.4.1.1 By Formation of One N--C and One C--C Bond 361
17.4.6.10.4.1.1.1 Method 1: By Condensation of 2,6-Dimethylaniline with Phenanthrene-9,10-dione 361
17.4.6.10.4.1.2 By Formation of One C--C Bond 361
17.4.6.10.4.1.2.1 Method 1: By Bischler–Napieralski Cyclodehydration of N-(2-Benzylphenyl)-2-chloroacetamide 361
17.4.6.10.4.1.2.2 Method 2: By Friedel–Crafts Cyclization of 2-Allyl-N-benzylanilines 362
17.4.6.10.4.1.2.3 Method 3: By Acid-Mediated Cyclization of Benzylic Alcohols 363
17.4.6.10.5 5H-Dibenz[c,e]azepines 365
17.4.6.10.5.1 Synthesis by Ring-Closure Reactions 365
17.4.6.10.5.1.1 By Formation of Two N--C Bonds 365
17.4.6.10.5.1.1.1 Method 1: Ring Closure of 2,2'-Difunctionalized Biaryls with Chiral Amines under Acidic Conditions 365
17.4.6.10.6 5H-Dibenz[b,f]azepines 370
17.4.6.10.6.1 Synthesis by Ring-Closure Reactions 370
17.4.6.10.6.1.1 By Formation of One C--C and One C--N Bond 370
17.4.6.10.6.1.1.1 Method 1: By a Palladium-Catalyzed Tandem Process 370
17.4.6.10.6.1.2 By Formation of One C--C Bond 371
17.4.6.10.6.1.2.1 Method 1: By Palladium-Catalyzed Intramolecular Amination 371
17.4.6.10.6.1.2.2 Method 2: Friedel–Crafts Acylation 372
17.4.6.10.6.2 Synthesis by Ring Transformation 373
17.4.6.10.6.2.1 By Ring Enlargement 373
17.4.6.10.6.2.1.1 Method 1: From 1-Arylindoles 373
17.4.6.10.6.2.1.1.1 Variation 1: Ring Expansion of 6-Methoxy-1-phenylindole 373
17.4.6.10.6.3 Aromatization 373
17.4.6.10.6.3.1 Method 1: Bromination–Dehydrobromination 373
17.4.6.10.6.3.1.1 Variation 1: Dehalogenation of 5-Acetyl-10,11-dibromo-10,11-dihydro-5H-dibenz[b,f]azepine with 1,2-Diphenylethane-1,2-diyldisodium 373
17.4.6.10.6.4 Synthesis by Substituent Modification 374
17.4.6.10.6.4.1 Substitution of Hydrogen 374
17.4.6.10.6.4.1.1 Method 1: N-Alkylation of 5H-Dibenz[b,f]azepines 374
17.4.6.10.6.4.1.1.1 Variation 1: By Phase-Transfer Catalysis 375
17.4.6.10.6.4.1.2 Method 2: N-Acylation of 5H-Dibenz[b,f]azepines 376
17.4.6.10.6.4.1.2.1 Variation 1: By Reaction with Acid Chlorides 376
17.4.6.10.6.4.1.2.2 Variation 2: By Reaction with Dimethyl Carbonate 377
17.4.6.10.6.4.1.2.3 Variation 3: By Palladium-Mediated Carbonylative Benzoylation of 5H-Dibenz[b,f]azepine 377
17.4.6.10.6.4.1.2.4 Variation 4: By Reaction with Trifluoroacetic Anhydride 378
17.4.6.10.6.4.1.2.5 Variation 5: N-Formylation of 5H-Dibenz[b,f]azepine 378
17.4.6.10.6.4.1.3 Method 3: Chlorocarbonylation of 5H-Dibenz[b,f]azepines with Phosgene Equivalents 379
17.4.6.10.6.4.1.3.1 Variation 1: N-Acylation of 5H-Dibenz[b,f]azepines Followed by Amination 379
17.4.6.10.6.4.1.4 Method 4: Formation of N--P Bonds 379
17.4.6.10.6.4.1.5 Method 5: By a Methoxy Group 381
17.4.6.10.6.4.1.6 Method 6: Palladium-Catalyzed N-Arylation 382
17.4.6.10.6.4.2 Substitution of Heteroatoms 383
17.4.6.10.6.4.2.1 Method 1: Substitution of Bromine 383
17.4.6.10.6.4.3 Addition Reactions 384
17.4.6.10.6.4.3.1 Method 1: Formation of Epoxides by Oxidation 384
17.4.6.10.6.4.3.2 Method 2: Formation of Diols by Oxidation 384
17.4.6.10.6.4.3.3 Method 3: [2 + 2] Photodimerization of 5-Acetyl-5H-dibenz[b,f]azepine 385
17.4.6.10.6.4.3.3.1 Variation 1: [2 + 2] Photodimerization of 5H-Dibenz[b,f]azepine Derivatives 385
17.4.6.10.7 9H-Tribenz[b,d,f]azepines 386
17.4.6.10.7.1 Synthesis by Ring-Closure Reactions 386
17.4.6.10.7.1.1 By Formation of One N--C Bond 386
17.4.6.10.7.1.1.1 Method 1: From N-(2-Bromophenyl)biphenyl-2-amine 386
17.4.6.10.8 Other Group 15 Benzoheterepins 387
17.4.6.10.8.1 3-Benzoheterepins 387
17.4.6.10.8.1.1 Synthesis by Ring-Closure Reactions 387
17.4.6.10.8.1.1.1 By Formation of Two Heteroatom--Carbon Bonds 387
17.4.6.10.8.1.1.1.1 Method 1: Potassium Hydroxide Catalyzed Addition of Metal Complexed Phosphines to 1,2-Diethynylbenzene 387
17.4.6.10.8.1.1.1.2 Method 2: From 1,2-Bis[(Z)-2-bromovinyl]benzenes and Metal Halides 388
Volume 19: Three Carbon--Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives 392
19.5 Product Class 5: Nitriles 392
19.5.17 Synthesis of Nitriles Using Cross-Coupling Reactions 392
19.5.17.1 Preparation of Aryl Cyanides 392
19.5.17.1.1 Method 1: Use of Alkali Metal Cyanides 392
19.5.17.1.1.1 Variation 1: Palladium-Catalyzed Approaches 393
19.5.17.1.1.2 Variation 2: Copper-Catalyzed Approaches 395
19.5.17.1.1.3 Variation 3: Dual Palladium- and Copper-Catalyzed Approaches 396
19.5.17.1.1.4 Variation 4: Nickel-Catalyzed Approaches 397
19.5.17.1.2 Method 2: Use of Zinc(II) Cyanide 398
19.5.17.1.2.1 Variation 1: Palladium-Catalyzed Approaches: Homogeneous Catalysis 398
19.5.17.1.2.2 Variation 2: Palladium-Catalyzed Approaches: Heterogeneous Catalysis 406
19.5.17.1.2.3 Variation 3: Copper-Mediated Approaches 408
19.5.17.1.3 Method 3: Use of Nickel(II) Cyanide as the Cyanide Source 409
19.5.17.1.4 Method 4: Use of Copper(I) Cyanide as the Cyanide Source 410
19.5.17.1.5 Method 5: Use of Potassium Hexacyanoferrate(II) as the Cyanide Source 411
19.5.17.1.5.1 Variation 1: Palladium-Catalyzed Approaches: Homogeneous Catalysis 411
19.5.17.1.5.2 Variation 2: Palladium-Catalyzed Approaches: Heterogeneous Catalysis 418
19.5.17.1.5.3 Variation 3: Copper-Catalyzed Approaches 421
19.5.17.1.5.4 Variation 4: Dual Palladium- and Copper-Catalyzed Approaches 424
19.5.17.1.6 Method 6: Use of Organic Cyanide Sources 425
19.5.17.1.6.1 Variation 1: Use of Cyanohydrins 425
19.5.17.1.6.2 Variation 2: Use of Trimethylsilyl Cyanide 429
19.5.17.1.6.3 Variation 3: Use of N-Cyano-N-phenyl-4-toluenesulfonamide 431
19.5.17.1.7 Method 7: In Situ Generation of Cyanide from Non-Cyanide-Containing Precursors 431
19.5.17.2 Preparation of Hetaryl Cyanides 433
19.5.17.2.1 Method 1: Palladium-Catalyzed Coupling Reactions 437
19.5.17.2.2 Method 2: Copper-Catalyzed Coupling Reactions 440
19.5.17.2.3 Method 3: Dual Palladium- and Copper-Catalyzed Approaches 443
19.5.17.3 Preparation of Vinyl Cyanides 446
19.5.17.3.1 Method 1: Cyanation of Vinyl Halides and Vinylboronic Acids 446
Volume 27: Heteroatom Analogues of Aldehydes and Ketones 454
27.25 Product Class 25: N-Sulfanyl-, N-Selanyl-, and N-Tellanylimines, and Their Oxidation Derivatives 454
27.25.1 Product Subclass 1: N-Sulfanylimines 454
27.25.1.1 Synthesis of Product Subclass 1 454
27.25.1.1.1 Method 1: Synthesis from Aldehydes or Ketones 454
27.25.1.1.1.1 Variation 1: From Ammonia and a Thiol 454
27.25.1.1.1.2 Variation 2: From Ammonia and a Disulfide 455
27.25.1.1.1.3 Variation 3: From N,N-Bis(trimethylsilyl)sulfenamides 456
27.25.1.1.1.4 Variation 4: From Sulfenamides 458
27.25.1.1.2 Method 2: Synthesis from Imines and Imine Derivatives 461
27.25.1.1.2.1 Variation 1: From N-Unsubstituted Imines 461
27.25.1.1.2.2 Variation 2: From Oximes 462
27.25.1.1.2.3 Variation 3: From Oxime Thiocarbamates 463
27.25.1.1.2.4 Variation 4: From O-Tosyloximes 464
27.25.1.1.2.5 Variation 5: From N-Chloroimines 465
27.25.1.1.3 Method 3: Synthesis from a-Aminoalkanoates 467
27.25.1.1.4 Method 4: Synthesis from Sulfinamides 468
27.25.1.1.5 Method 5: Synthesis from Nitro Compounds 468
27.25.2 Product Subclass 2: N-Sulfinylimines 469
27.25.2.1 Synthesis of Product Subclass 2 469
27.25.2.1.1 Method 1: Synthesis by Oxidation of N-Sulfanylimines 469
27.25.2.1.2 Method 2: Synthesis from N-Metalated Imines 473
27.25.2.1.2.1 Variation 1: From Sulfinate Esters 473
27.25.2.1.2.2 Variation 2: From a Cyclic Sulfinamide 475
27.25.2.1.3 Method 3: Synthesis from Ortho Esters 476
27.25.2.1.4 Method 4: Synthesis from an Aldehyde Hydrate 477
27.25.2.1.5 Method 5: Synthesis from Carbonyl Derivatives 477
27.25.2.1.5.1 Variation 1: From 1,2,3-Oxathiazolidine 2-Oxides 477
27.25.2.1.5.2 Variation 2: From Sulfinate Esters 479
27.25.2.1.5.3 Variation 3: From an N-Sulfinylbornane-10,2-sultam 481
27.25.2.1.5.4 Variation 4: From Sulfinamides 482
27.25.2.1.5.5 Variation 5: From a Phosphazene 485
27.25.2.1.6 Method 6: Synthesis from Sulfoximides 486
27.25.2.1.7 Method 7: Synthesis from Other N-Sulfinylimines 487
27.25.2.2 Applications of Product Subclass 2 in Organic Synthesis 488
27.25.3 Product Subclass 3: N-Sulfonylimines 490
27.25.3.1 Synthesis of Products of Subclass 3 490
27.25.3.1.1 Method 1: Synthesis from Acetals 490
27.25.3.1.1.1 Variation 1: From O,O-Acetals and Sulfonamides 490
27.25.3.1.1.2 Variation 2: From N-[(Arylsulfonyl)methyl]arenesulfonamides 491
27.25.3.1.2 Method 2: Synthesis from Alkenes and Allenes 492
27.25.3.1.2.1 Variation 1: By Oxidative Amination 492
27.25.3.1.2.2 Variation 2: From N,N-Dihalosulfonamides 493
27.25.3.1.2.3 Variation 3: From Sulfonyl Azides 493
27.25.3.1.2.4 Variation 4: From Oxazolidinones 495
27.25.3.1.3 Method 3: Synthesis from Alkynes 496
27.25.3.1.3.1 Variation 1: By a Hydroamination Reaction 496
27.25.3.1.3.2 Variation 2: From Sulfonyl Azides 498
27.25.3.1.3.3 Variation 3: Through Iminobismuthane Addition 499
27.25.3.1.4 Method 4: Synthesis from Aziridines 500
27.25.3.1.5 Method 5: Synthesis from Carbonyl Compounds 501
27.25.3.1.5.1 Variation 1: From Sulfonamides 501
27.25.3.1.5.2 Variation 2: From Isocyanates 506
27.25.3.1.5.3 Variation 3: From N-Sulfinylsulfonamides 507
27.25.3.1.5.4 Variation 4: From Chloramine-T 508
27.25.3.1.6 Method 6: Synthesis from Other Imines 510
27.25.3.1.6.1 Variation 1: From Oximes 510
27.25.3.1.6.2 Variation 2: From N-(Trimethylsilyl)imines 512
27.25.3.1.6.3 Variation 3: From N-Sulfanylimines 512
27.25.3.1.6.4 Variation 4: From N-Sulfinylimines 513
27.25.3.1.6.5 Variation 5: From Imidoyl Chlorides 514
27.25.3.1.7 Method 7: Synthesis from Sulfimides 515
27.25.3.1.8 Method 8: Synthesis by Oxidation of N-Sulfonylanilines 517
27.25.3.1.9 Method 9: Synthesis from N-Sulfonylamides 524
27.25.3.2 Applications of Product Subclass 3 in Organic Synthesis 524
27.25.4 Product Subclass 4: N-Selanylimines 525
27.25.4.1 Synthesis of Product Subclass 4 525
27.25.4.1.1 Method 1: Synthesis from N-Unsubstituted Imines 525
27.25.4.1.2 Method 2: Synthesis by Oxidation of Phenols 525
27.25.4.1.3 Method 3: Synthesis from N-Selenamides 527
27.25.5 Product Subclass 5: N-Seleninylimines and Related Compounds 527
27.25.5.1 Synthesis of Product Subclass 5 527
27.25.5.1.1 Method 1: Synthesis from Imines and Imine Derivatives 527
27.25.5.1.1.1 Variation 1: From Imines 528
27.25.5.1.1.2 Variation 2: From N-Chloroimines 528
27.25.6 Product Subclass 6: N-Tellanylimines 528
27.25.6.1 Synthesis of Product Subclass 6 528
27.25.6.1.1 Method 1: From N-Metalloimines 528
27.25.6.1.2 Method 2: From Pentafluorotellurium Isocyanate 529
Author Index 538
Abbreviations 560
List of All Volumes 566

Abstracts


2.10.19 Organometallic Complexes of Titanium (Update 1)


P. Bertus, F. Boeda, and M. S. M. Pearson-Long

This chapter is an update to the earlier Science of Synthesis contribution describing the synthesis and application of titanium complexes in organic synthesis. This update focuses on the synthesis of cyclopropane derivatives using titanium reagents, with particular emphasis on the preparation of cyclopropanols from carboxylic esters (Kulinkovich reaction) and cyclopropylamines from carboxylic amides or nitriles.

Keywords: amides · bicyclic compounds · carbonates · cyclopropanes · cyclopropanols · cyclopropylamines · esters · Grignard reagents · imides · magnesium · nitriles · titanium

4.4.1 Product Subclass 1: Disilenes


A. Meltzer and D. Scheschkewitz

The syntheses of stable and marginally stable compounds with Si=Si bonds, i.e. linear and cyclic disilenes as well as tetrasilabutadienes, are reviewed. Typical procedures are described including detailed special requirements and precautions.

Keywords: alkene analogues · coupling reactions · cyclic compounds · dehalogenation · disilenes · disilenides · disilynes · photolysis · reductive coupling · silanes · silicon compounds · silylenes · silyl halides · unsaturated compounds

8.1.31 Functionalized Organolithiums by Ring Opening of Heterocycles


M. Yus and F. Foubelo

This manuscript describes the preparation of functionalized organolithium compounds by reductive opening of heterocycles and further reaction of these intermediates with electrophiles.

Keywords: activation of C—O bonds · alkali metal compounds · carbanions · carbon—metal bonds · heterocycles · lithiation · lithium compounds · radical ions · reductive cleavage

8.1.32 Syntheses Mediated by α-Lithiated Epoxides and Aziridines


L. Degennaro, F. M. Perna, and S. Florio

Three-membered ring heterocycles such as epoxides and aziridines, whose structural motif occurs frequently in natural products and biologically active substances, are an uncommon combination of reactivity, synthetic flexibility, and atom economy. Readily accessible, also in enantioenriched form, they are mainly used as electrophiles, undergoing highly regioselective ring-opening reactions when reacted with nucleophiles. There are, however, many other less conventional but useful reactions these small-ring heterocycles may undergo. This chapter surveys a selection of the most recent advances in the chemistry of α-lithiated epoxides and aziridines, which can be simply generated by treatment of the parent epoxide or aziridine with strong bases such as organolithiums or lithium amides. Such lithiated species are relatively stable and can be captured with a number of electrophiles to give more functionalized oxiranes and aziridines or undergo other transformations including 1,2-organo shifts to enolates, eliminative dimerization, β-elimination, intramolecular cyclopropanation onto a double bond (C=C insertion), transannular C—H insertion, and reductive alkylation.

Keywords: oxiranes · aziridines · small-ring heterocycles · α-lithiation · carbenoids · organolithiums · configurational stability · asymmetric synthesis

8.1.33 Transition-Metal-Catalyzed Carbon—Carbon Bond Formation with Organolithiums


G. Manolikakes

Transition-metal-catalyzed reactions with organolithiums are a useful tool for the formation of carbon—carbon bonds. This chapter covers reactions with organolithium compounds catalyzed by various transition metals such as copper, palladium, or iron.

Keywords: lithium compounds · cross coupling · copper catalysis · palladium catalysis · iron catalysis · carbolithiation · asymmetric catalysis

16.2.4 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives


S. M. Sakya and J. Yang

This manuscript concerns three types of compound: 1,4-dioxins, 1,4-benzodioxins, and dibenzo[b,e][1,4]dioxins, and covers recent syntheses of these substrates that have not previously been highlighted in Section 16.2 of Science of Synthesis.

Keywords: aromatization · base-induced coupling · 1,4-benzodioxins · Diels–Alder reaction · 1,4-dioxins · dibenzo[b,e][1,4]dioxins · lithium–halogen exchange · ring-closing metathesis · ring-closure reactions · Stille coupling · substituent modification · Vilsmeier reaction

16.3.5 1,2-Dithiins


F. K. Yoshimoto and Q. Li

1,2-Dithiins are six-membered rings with two double bonds and two sulfur atoms within the ring. Related compounds include 3,6-dihydro-1,2-dithiins, 1,4-dihydrobenzo[d][1,2]dithiins, and dibenzo[c,e][1,2]dithiins. A wide variety of compounds observed in nature are found to contain the dithiin motif and the group is implicated in a wide range of biological activity. 1,2-Dithiins have also been used in other fields, for example as organic transistors and ligands for transition metals. This section updates previously published material in Science of Synthesis and in particular focuses on synthesis by ring-closure reactions and applications of the group in reactions with transition metals, Lewis acids, diazo compounds, alkynes, and enzymes.

Keywords: cyclization · diazo compounds · dibenzo[c,e][1,2]dithiins · Diels–Alder reaction · 1,4-dihydrobenzo[d][1,2]dithiins · 3,6-dihydro-1,2-dithiins · dimerization · 1,2-dithianes · 1,2-dithiins · enzymes · Lewis acids · phase-transfer catalysis · photolysis · ring-closing metathesis · ring-closure reactions · sulfonation · transition metals

17.4.1.5 Oxepins


J. Hong

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of oxepins. It focuses on the literature published in the period 2003–2011.

Keywords: cycloaddition · dehydrogenation · isomerization · Michael addition · nucleophilic substitution · ring expansion

17.4.2.5 Benzoxepins


J. Hong

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of benzoxepins. It focuses on the literature published in the period 2003–2011.

Keywords: annulation · condensation reactions · cyclization · cyclocondensation · rearrangement · ring closure · ring expansion · transition metals

17.4.5.5 Azepines, Cyclopentazepines, and Phosphorus Analogues


J. E. Camp

This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the synthesis of fully unsaturated azepines, cyclopentazepines, and their phosphorus analogues. It focuses on the literature published between 2003 and 2010.

Keywords: azepines · cyclopentazepines · electrocyclization · Diels–Alder · photolytic decomposition · rearrangement · C-amination · C-alkoxylation · Friedel–Crafts · azepinium ion

17.4.6.10 Benzazepines and Their Group 15 Analogues


J. E. Camp

This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the synthesis of fully unsaturated benzazepines and their group 15 analogues. It focuses on the literature published between 2003 and 2010.

Keywords: benzazepines · dibenzoheterepins · tribenzoheterepins · condensation · Bischler–Napieralski · tandem reaction · phase-transfer catalysis · ring enlargement · photodimerization · benzoheterepins · Friedel–Crafts

19.5.17 Synthesis of Nitriles Using Cross-Coupling Reactions


D. M. Rudzinski and N. E. Leadbeater

The synthesis of aryl and hetaryl nitriles by metal-catalyzed cross-coupling reactions is presented. Attention is focused mainly on key methodologies published in the period 2003–2011. As well as the use of alkali metal cyanide salts as sources of cyanide, the application of the less toxic and increasingly popular potassium hexacyanoferrate(II) is also discussed.

Keywords: nitriles · cyanide · cyanation · cross coupling · palladium · nickel · copper · aryl halides · hetaryl halides · aryl trifluoromethanesulfonates · aryl methanesulfonates

27.25 Product Class 25: N-Sulfanyl-, N-Selanyl-, and N-Tellanylimines, and Their Oxidation...


Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte aldehydes • azepines • benzoxepins • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • cyclopentazepines • Derivatives • disilenes • Functional Group • Heteroatom • isocyanides • Lithium • LITH IUM • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • nitriles • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Organometallic • oxepins • Peptide synthesis • phosphorus analogues • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Silicon • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • Titanium
ISBN-10 3-13-178811-9 / 3131788119
ISBN-13 978-3-13-178811-5 / 9783131788115
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 14,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95