Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Asymmetric Organocatalysis Vol. 1 (eBook)

Lewis Base and Acid Catalysts

Benjamin List (Herausgeber)

eBook Download: EPUB
2014 | 1. Auflage
992 Seiten
Thieme (Verlag)
978-3-13-178991-4 (ISBN)

Lese- und Medienproben

Science of Synthesis: Asymmetric Organocatalysis Vol. 1 -
Systemvoraussetzungen
259,99 inkl. MwSt
(CHF 249,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<p><em>Asymmetric Organocatalysis</em> comprehensively covers all the catalysts and reactions within the activation modes Lewis base catalysis and Lewis acid catalysis. Typical or general experimental procedures as well as mechanistic, technical and theoretical aspects are included, allowing the reader to clearly see how simple, clean and efficient this chemistry is.</p><p><ul><li>Authoritative, broad overview of the field, compiled by 36 experts</li><li>Critical presentation of the best organocatalytic and related methodologies available today for practical asymmetric synthesis</li><li>Provides alternative, greener syntheses with simple and easily used catalysts helping avoid the use of expensive and/or toxic metals</li></ul></p>

Science of Synthesis: Asymmetric Organocatalysis 1 – Lewis Base and Acid Catalysts 1
Organizational Structure of Science of Synthesis 2
Science of Synthesis Reference Library 3
Title page 5
Imprint 7
Preface 8
Asymmetric Organocatalysis Volumes 10
Abstracts 12
Overview 24
Table of Contents 26
1.1 Lewis Bases 42
1.1.1 Enamine Catalysis of Intramolecular Aldol Reactions 42
1.1.1.1 Enamine Catalysis of Intramolecular Enolendo Aldol Reactions 43
1.1.1.1.1 Starting from Triketones 43
1.1.1.1.2 Starting from Diketones 61
1.1.1.2 Enamine Catalysis of Intramolecular Enolexo Aldol Reactions 64
1.1.1.2.1 Starting from Dialdehydes 64
1.1.1.2.2 Starting from Keto Aldehydes 66
1.1.1.3 Enamine Catalysis of Intramolecular Transannular Aldol Reactions 68
1.1.1.3.1 Starting from Diketones 68
1.1.2 Enamine Catalysis of Intermolecular Aldol Reactions 76
1.1.2.1 Structural Requirements for Enamine Catalysts of the Aldol Reaction 80
1.1.2.2 Reactions Using Ketone Donors 81
1.1.2.2.1 Reactions Catalyzed by Proline 82
1.1.2.2.2 Reactions Catalyzed by Proline Derivatives 85
1.1.2.2.3 Reactions Catalyzed by Other Amino Acid Derivatives 89
1.1.2.2.4 Reactions Catalyzed by Other Chiral Amines 92
1.1.2.3 Reactions Using Aldehyde Donors 96
1.1.2.3.1 Reactions Catalyzed by Proline 96
1.1.2.3.2 Reactions Catalyzed by Proline Derivatives 100
1.1.2.3.3 Reactions Catalyzed by Other Chiral Amines 105
1.1.3 Enamine Catalysis of Mannich Reactions 114
1.1.3.1 Mannich Reaction of N-Arylimines with Carbonyl Compounds 116
1.1.3.1.1 Three-Component Mannich Reaction 117
1.1.3.1.1.1 Reaction of Ketones 117
1.1.3.1.1.2 Reaction of Aldehydes 134
1.1.3.1.2 Two-Component Mannich Reaction 138
1.1.3.1.2.1 Reaction of Ketones 138
1.1.3.1.2.2 Reaction of Aldehydes 144
1.1.3.1.3 anti-Selective Reaction of N-Arylimines 148
1.1.3.2 Mannich Reaction of N-Carbamoyl- and N-Sulfonylimines with Carbonyl Compounds 156
1.1.3.3 Mannich Reaction of Other Imines: N-Alkylimines, Cyclic Imines, and Ketimines 167
1.1.4 Enamine Catalysis of Michael Reactions 176
1.1.4.1 Intramolecular Michael Reactions 177
1.1.4.1.1 Intramolecular Michael Reaction of Aldehydes with Enones 177
1.1.4.1.2 Synthesis of Bicyclic and Tetracyclic Compounds via Intramolecular Michael Reaction of Aldehydes with Enones 179
1.1.4.1.3 Intramolecular Michael Reaction of Aldehydes with Enals 182
1.1.4.1.4 Intramolecular Michael/Isomerization Reaction of Enals with Enones 183
1.1.4.1.5 Intramolecular Reductive Michael Reaction of Enals with Enones 184
1.1.4.1.6 Intramolecular Michael Reaction of Aldehydes with Vinyl Sulfones 186
1.1.4.2 Intermolecular Michael Reactions 186
1.1.4.2.1 Intermolecular Michael Reaction with a,ß-Unsaturated Carbonyl Compounds as Acceptor 187
1.1.4.2.1.1 Intermolecular Michael Reaction of Ketones with Enones 188
1.1.4.2.1.2 Intermolecular Michael Reaction of Aldehydes with Enones 189
1.1.4.2.1.3 Intermolecular Michael/Acetalization Reaction of Aldehydes with Quinones 192
1.1.4.2.1.4 Intermolecular Michael Reaction of Aldehydes with Enals 193
1.1.4.2.1.5 Intermolecular Michael Reaction of Ketones with a,ß-Unsaturated Esters 194
1.1.4.2.1.6 Intermolecular One-Pot Knoevenagel/Michael Reaction of Ketones with a,ß-Unsaturated Esters 196
1.1.4.2.1.7 Intermolecular Michael Reaction of Aldehydes with a,ß-Unsaturated Esters 197
1.1.4.2.1.8 Intermolecular Michael Reaction of Ketones with a,ß-Unsaturated Nitriles 201
1.1.4.2.1.9 Intermolecular Michael Reaction of Ketones with Imides 201
1.1.4.2.1.10 Intermolecular Michael Reaction of Aldehydes with Imides 202
1.1.4.2.2 Intermolecular Michael Reactions with Nitroalkenes as Acceptor 203
1.1.4.2.2.1 Intermolecular Michael Reaction of Ketones with Nitroalkenes Using Secondary Amine Catalysts 203
1.1.4.2.2.2 Intermolecular Michael Reaction of Ketones with Nitroalkenes Using Primary Amine Catalysts 208
1.1.4.2.2.3 Intermolecular Michael Reaction of Hydroxyacetone Derivatives with Nitroalkenes 210
1.1.4.2.2.4 Intermolecular Michael Reaction of Dihydroxyacetone Derivatives with Nitroalkenes 212
1.1.4.2.2.5 Intermolecular Michael Reaction of a-Amino or a-Sulfanyl Ketones with Nitroalkenes 213
1.1.4.2.2.6 Intermolecular Michael Reaction of Aldehydes with Nitroalkenes 214
1.1.4.2.2.7 Intermolecular Michael Reaction of Disubstituted Aldehydes with Nitroalkenes 217
1.1.4.2.2.8 Intermolecular anti-Selective Michael Reaction of a-Oxyaldehydes with Nitroalkenes 219
1.1.4.2.2.9 Intermolecular Michael Reaction of a-Aminoaldehydes with Nitroalkenes 220
1.1.4.2.2.10 Intermolecular Michael Reaction of Enals with Nitroalkenes 221
1.1.4.2.2.11 Intermolecular Michael Reaction of Ketones or Aldehydes with Modified Nitroalkenes 222
1.1.4.2.2.12 Intermolecular Michael Reaction of Ketones or Aldehydes with Nitrodienes 226
1.1.4.2.2.13 Intermolecular Michael Reaction of Ketones or Aldehydes with Nitroenynes 227
1.1.4.2.2.14 Intermolecular One-Pot Michael Reaction of Aldehydes with Nitroalkenes 229
1.1.4.2.2.15 Intermolecular Michael Reaction of Ketones or Aldehydes with Nitroalkenes in Water 230
1.1.4.2.2.16 Intermolecular Michael Reaction of Ketones or Aldehydes with Nitroalkenes in Ionic Liquids 233
1.1.4.2.3 Intermolecular Michael Reactions with Vinyl Sulfones as Acceptor 234
1.1.4.2.3.1 Intermolecular Michael Reaction of Ketones with Vinyl Sulfones 235
1.1.4.2.3.2 Intermolecular Michael Reaction of Aldehydes with Vinyl Sulfones 236
1.1.4.2.3.3 Intermolecular One-Pot Michael/Cyclization Reaction of Aldehydes with Vinyl Sulfones 239
1.1.4.2.4 Intermolecular Michael Reactions with Vinylphosphonates as Acceptor 240
1.1.4.2.4.1 Intermolecular Michael Reaction of Ketones with Vinylphosphonates 240
1.1.4.2.4.2 Intermolecular Michael Reaction of Aldehydes with Vinylphosphonates 241
1.1.4.2.5 Domino Reactions Including Michael Addition via Enamine Catalysis 242
1.1.4.2.5.1 Intermolecular Domino Michael/Alkylation Reactions 242
1.1.4.2.5.2 Intermolecular Domino Michael/Aldol Reactions 243
1.1.4.2.5.3 Intermolecular Domino Michael/Michael Reactions 244
1.1.4.2.5.4 Intermolecular Triple Domino Michael/Michael/Aldol Reactions 247
1.1.4.2.5.5 Intermolecular Quadruple Domino Michael/Michael/Michael/Aldol Reactions 249
1.1.5 Enamine Catalysis of a-Functionalizations and Alkylations 258
1.1.5.1 a-Amination of Carbonyl Compounds 259
1.1.5.1.1 a-Amination of Aldehydes 259
1.1.5.1.1.1 a-Hydrazination Using Azodicarboxylates 259
1.1.5.1.1.2 a-Hydroxyamination Using Nitrosobenzene 263
1.1.5.1.2 a-Amination of Ketones 265
1.1.5.2 a-Oxygenation of Carbonyl Compounds 267
1.1.5.2.1 a-Oxygenation of Aldehydes 267
1.1.5.2.1.1 a-Aminoxylation Using Nitrosobenzene 267
1.1.5.2.1.2 a-Benzoyloxylation Using Dibenzoyl Peroxide 269
1.1.5.2.1.3 a-Oxygenation Using Molecular Oxygen 272
1.1.5.2.2 a-Oxygenation of Ketones 273
1.1.5.3 a-Halogenation of Carbonyl Compounds 274
1.1.5.3.1 a-Fluorination of Carbonyl Compounds 274
1.1.5.3.1.1 a-Fluorination of Aldehydes 274
1.1.5.3.1.2 a-Fluorination of Ketones 277
1.1.5.3.2 a-Chlorination of Carbonyl Compounds 279
1.1.5.3.2.1 a-Chlorination of Aldehydes 279
1.1.5.3.2.2 a-Chlorination of Ketones 282
1.1.5.3.3 a-Bromination of Carbonyl Compounds 283
1.1.5.3.3.1 a-Bromination of Aldehydes 283
1.1.5.3.3.2 a-Bromination of Ketones 285
1.1.5.3.4 a-Iodination of Carbonyl Compounds 286
1.1.5.4 a-Sulfanylation of Carbonyl Compounds 289
1.1.5.5 a-Selanylation of Carbonyl Compounds 293
1.1.5.6 a-Alkylation of Carbonyl Compounds 296
1.1.5.6.1 Intramolecular a-Alkylation of Aldehydes 297
1.1.5.6.2 Intermolecular a-Alkylation of Aldehydes 299
1.1.5.6.2.1 a-Alkylation of a-Unbranched Aldehydes 299
1.1.5.6.2.2 a-Allylation of a-Unbranched Aldehydes 300
1.1.5.6.2.3 a-Alkylation of a-Branched Aldehydes 302
1.1.5.6.2.4 a-Trifluoromethylation of Aldehydes 303
1.1.5.7 a-Arylation of Carbonyl Compounds 306
1.1.6 SOMO and Radical Chemistry in Organocatalysis 312
1.1.6.1 C--C Bond Formation via SOMO Catalysis 314
1.1.6.1.1 a-Allylation of Aldehydes 314
1.1.6.1.2 a-Enolation of Aldehydes 316
1.1.6.1.3 a-Vinylation of Aldehydes 319
1.1.6.1.4 a-Homobenzylation of Aldehydes 321
1.1.6.1.5 a-Nitroalkylation of Aldehydes 325
1.1.6.1.6 a-Arylation of Aldehydes 328
1.1.6.1.7 Polyene Cyclizations 333
1.1.6.1.8 Cycloadditions 335
1.1.6.1.9 a-Substitution of Ketones 338
1.1.6.2 Other Bond Formations via SOMO Catalysis 341
1.1.6.2.1 a-Oxyamination of Aldehydes 341
1.1.6.2.2 a-Chlorination of Aldehydes 344
1.1.7 Iminium Catalysis 350
1.1.7.1 Iminium-Mediated Enantioselective Cycloaddition Processes 353
1.1.7.1.1 Diels--Alder Processes 354
1.1.7.1.1.1 Intramolecular Processes 354
1.1.7.1.1.2 Intermolecular Processes 357
1.1.7.1.2 [3 + 2]-Dipolar Cycloaddition Processes 363
1.1.7.1.2.1 Nitrone-Based Processes 363
1.1.7.1.2.2 Azomethine Ylide Based Processes 365
1.1.7.1.3 [4 + 3]-Cycloaddition Processes 367
1.1.7.2 Iminium-Catalyzed Enantioselective ß-Functionalization 369
1.1.7.2.1 Enantioselective 1,4-Addition of Carbon Nucleophiles 370
1.1.7.2.1.1 Arene Nucleophiles: Friedel--Crafts Processes 370
1.1.7.2.1.1.1 Intramolecular Processes 370
1.1.7.2.1.1.2 Intermolecular Processes 372
1.1.7.2.1.2 1,3-Dicarbonyl-Based Nucleophiles 379
1.1.7.2.1.3 a,a-Dicyanoalkene-Based Nucleophiles 384
1.1.7.2.1.4 Nitroalkane-Based Nucleophiles 386
1.1.7.2.1.5 Sulfone-Based Nucleophiles 391
1.1.7.2.1.6 Silyl Enol Ether Based Nucleophiles 397
1.1.7.2.1.7 Ene Reaction Based Processes 400
1.1.7.2.1.7.1 Ene Reactions 400
1.1.7.2.1.7.2 Aza-Ene Reactions 402
1.1.7.2.1.8 Petasis Reaction Based Processes 404
1.1.7.2.2 Enantioselective 1,4-Hydride Reduction 407
1.1.7.2.2.1 Chiral Amine Directed Enantioinduction 408
1.1.7.2.2.2 Chiral Counteranion Directed Enantioinduction 410
1.1.7.2.3 Enantioselective 1,4-Addition of Nitrogen Nucleophiles 411
1.1.7.2.3.1 Intramolecular Processes 411
1.1.7.2.3.2 Intermolecular Processes 412
1.1.7.2.4 Enantioselective 1,4-Addition of Oxygen Nucleophiles 417
1.1.7.2.5 Enantioselective 1,4-Addition of Phosphorus Nucleophiles 420
1.1.7.2.6 Enantioselective 1,4-Addition of Sulfur Nucleophiles 423
1.1.7.3 Iminium-Catalyzed Enantioselective Cyclopropanation, Aziridination, and Epoxidation 425
1.1.7.3.1 Enantioselective Cyclopropanation Reactions 426
1.1.7.3.2 Enantioselective Aziridination Reactions 430
1.1.7.3.3 Enantioselective Epoxidation Reactions 433
1.1.8 Iminium Catalysis with Primary Amines 444
1.1.8.1 Carbon--Carbon Bond-Forming Reactions 446
1.1.8.1.1 Friedel--Crafts Alkylation of Indoles with Enones 446
1.1.8.1.2 Friedel--Crafts Alkylation of Indoles with a-Branched Enals 448
1.1.8.1.3 Additions of 4-Hydroxy-2H-benzopyran-2-one to Enones: Synthesis of Warfarin 450
1.1.8.2 Oxidation Reactions 451
1.1.8.2.1 Epoxidation of Cyclic Enones 452
1.1.8.2.2 Epoxidation of a-Branched Enals 454
1.1.8.2.3 Hydroperoxidation and Epoxidation of Linear Enones 455
1.1.8.2.4 Alkyl Peroxidation of Linear Enones 457
1.1.8.3 Carbon--Nitrogen Bond-Forming Reactions 458
1.1.8.3.1 Aza-Michael Reactions of Linear Enones 459
1.1.8.3.1.1 Synthesis of ß-Amino Ketones 459
1.1.8.3.1.2 Synthesis of 5-Hydroxyisoxazolidines 460
1.1.8.3.2 Aziridination of Enones 461
1.1.8.4 Iminium-Catalyzed Reductions 465
1.1.8.4.1 Transfer Hydrogenation of Cyclic Enones 465
1.1.8.5 Sulfa-Michael Reactions 467
1.1.8.5.1 Sulfa-Michael Reactions with Enones 467
1.1.8.5.2 Sulfa-Michael Reactions with a-Branched Enals 469
1.1.8.6 Cycloaddition Reactions 470
1.1.8.6.1 Diels--Alder Reactions 471
1.1.8.6.1.1 Reactions of 2-(Acyloxy)propenals 471
1.1.8.6.1.2 Reactions of a-Branched Propenals 473
1.1.8.6.1.3 Reactions of Enones 474
1.1.8.6.2 1,3-Dipolar Cycloadditions 476
1.1.9 Applications of Aminocatalysis in Target-Oriented Synthesis 480
1.1.9.1 Enamine Activation 480
1.1.9.1.1 The Aldol Reaction 480
1.1.9.1.2 The Mannich Reaction 482
1.1.9.1.3 a-Heterofunctionalization 483
1.1.9.2 Iminium Activation 486
1.1.9.2.1 Pericyclic Reactions 486
1.1.9.2.2 Conjugate Additions 487
1.1.9.3 Dienamine Activation 490
1.1.9.4 Combinations of Enamine and Iminium Activation 491
1.1.9.5 Conclusions 493
1.1.10 Tertiary Amine and Phosphine-Catalyzed Reactions of Ketenes and a-Halo Ketones 496
1.1.10.1 Alcoholysis of Ketenes 496
1.1.10.2 Aminolysis of Ketenes 499
1.1.10.3 Asymmetric Synthesis of ß-Lactones 501
1.1.10.3.1 Disubstituted ß-Lactones 501
1.1.10.3.1.1 Cinchona Alkaloid Systems 501
1.1.10.3.2 Trisubstituted ß-Lactones 505
1.1.10.3.2.1 Ferrocenylamine Systems 505
1.1.10.3.2.2 Phosphine Systems 506
1.1.10.3.2.3 N-Heterocyclic Carbene Systems 507
1.1.10.3.3 Homodimerization of Ketenes 508
1.1.10.3.3.1 Homodimerization of Pregenerated Monosubstituted Ketenes 508
1.1.10.3.3.2 Homodimerization of In Situ Generated Monosubstituted Ketenes 509
1.1.10.3.3.3 Homodimerization of Disubstituted Ketenes 511
1.1.10.4 Asymmetric Synthesis of ß-Lactams 512
1.1.10.4.1 Disubstituted ß-Lactams 513
1.1.10.4.1.1 Cinchona Alkaloid Systems 513
1.1.10.4.1.2 Bifunctional Catalytic Systems 515
1.1.10.4.2 Trisubstituted ß-Lactams 516
1.1.10.4.2.1 Ferrocenylamine Systems 516
1.1.10.4.2.2 N-Heterocyclic Carbene Systems 518
1.1.10.4.3 Aza-ß-lactams 519
1.1.10.4.4 Oxa-ß-lactams 519
1.1.10.5 Asymmetric Halogenation of Ketenes 520
1.1.10.5.1 a-Chlorination of Monosubstituted Ketenes 520
1.1.10.5.2 a-Bromination of Monosubstituted Ketenes 523
1.1.10.5.3 a-Chlorination of Disubstituted Ketenes 524
1.1.10.5.4 a-Fluorination of Monosubstituted Ketenes 525
1.1.10.6 Asymmetric [4 + 2]-Cycloaddition Reactions of Ketenes 526
1.1.10.6.1 Benzo-1,2-quinone Derivatives 526
1.1.10.6.1.1 o-Quinone Reactions 526
1.1.10.6.1.2 o-Quinone Imide Reactions 527
1.1.10.6.1.3 o-Quinone Diimide Reactions 529
1.1.10.6.2 N-(Thioacyl)imine Reactions 530
1.1.10.6.3 Synthesis of d-Lactones 531
1.1.10.6.3.1 Conjugate Addition--Cyclization 531
1.1.10.6.3.2 Ketene Dienolates 532
1.1.10.7 Cyclopropanation of Enoates with 2-Halo-1-arylethanones 533
1.1.11 Chiral DMAP-Type Catalysts for Acyl-Transfer Reactions 538
1.1.11.1 Reactivity of DMAP-Type Catalysts 538
1.1.11.2 O-Acylation 541
1.1.11.2.1 Kinetic Resolution 541
1.1.11.2.1.1 Kinetic Resolution of Racemic Alcohols 541
1.1.11.2.1.2 Dynamic Kinetic Resolution 555
1.1.11.2.2 Desymmetrization of meso-Diols 557
1.1.11.2.3 Enantioselective Addition of Phenols and Enols to Ketenes 560
1.1.11.2.4 Regioselective Acylation 564
1.1.11.3 N-Acylation 570
1.1.11.4 C-Acylation 577
1.1.12 Non-DMAP-Type Catalysts for Acyl-Transfer Reactions 588
1.1.12.1 Acylative Kinetic Resolutions 590
1.1.12.1.1 Simple, Parallel, and Dynamic Kinetic Resolutions of Racemic Alcohols and Carboxylic Acids 590
1.1.12.1.1.1 Phosphine and Phosphinite Catalysts 590
1.1.12.1.1.2 Amidine and Isothiourea Catalysts 594
1.1.12.1.1.3 Imidazole and Other N-Heterocycle-Based Catalysts 602
1.1.12.1.1.4 N-Heterocyclic Carbene Based Catalysts for the Kinetic Resolution of Alkyl Aryl Alcohols 607
1.1.12.1.1.5 Diamine Catalysts for the Kinetic Resolution of Primary and Secondary Alcohols 608
1.1.12.1.1.6 Other Kinetic Resolutions 609
1.1.12.2 Acylative Asymmetric Desymmetrizations 611
1.1.12.2.1 Desymmetrizations of Achiral/meso-Diols 611
1.1.12.2.1.1 Phosphine and Phosphinite Catalysts 611
1.1.12.2.1.2 Isothiourea Catalysts 612
1.1.12.2.1.3 Peptide- and Imidazole-Based Catalysts 613
1.1.12.2.1.4 N-Heterocyclic Carbene Catalysts 615
1.1.12.2.1.5 Other Catalysts 616
1.1.12.3 Asymmetric C-Carboxylations and C-Acylations of Enolate Derivatives 618
1.1.12.3.1 Steglich and Related Rearrangements 618
1.1.12.3.1.1 Phosphine Catalysts 619
1.1.12.3.1.2 Isothiourea- and Imidazole-Based Catalysts 619
1.1.12.3.1.3 N-Heterocyclic Carbene Catalysts 623
1.1.12.3.1.4 Other Catalysts 623
1.1.12.3.2 C-Acylations of Ketene Silyl Acetals 625
1.1.12.3.2.1 Isothiourea Catalysts 626
1.1.12.4 Conclusions 628
1.1.13 Carbene-Catalyzed Benzoin Reactions 632
1.1.13.1 Benzoin Reactions of Two Aldehydes 634
1.1.13.1.1 Design and Preparation of Chiral Carbene Precursors 634
1.1.13.1.2 Homobenzoin Reaction of Aromatic Aldehydes 637
1.1.13.1.3 Enzymatic Homobenzoin Reactions 638
1.1.13.1.4 Crossed Benzoin Reactions 639
1.1.13.1.5 Enzymatic Crossed Benzoin Reactions 642
1.1.13.1.6 Crossed Benzoin Reactions of Acylsilanes with Aldehydes 642
1.1.13.1.7 Intramolecular Benzoin Reactions of Dialdehydes 643
1.1.13.2 Crossed Reactions of Aldehydes with Other Acceptors 644
1.1.13.2.1 Aldehyde--Imine Benzoin Reactions 645
1.1.13.2.2 Aldehyde--Ketone Benzoin Cyclizations 648
1.1.13.2.3 Intermolecular Aldehyde--Ketone Benzoin Reactions 653
1.1.13.2.4 Cascade Reactions Involving Benzoin Reactions 654
1.1.13.2.5 Application to Natural Product Synthesis 655
1.1.14 Carbene-Catalyzed Stetter Reactions 660
1.1.14.1 Asymmetric Intramolecular Stetter Reactions Catalyzed by N-Heterocyclic Carbenes 663
1.1.14.1.1 Reactions of Aryl Aldehydes 663
1.1.14.1.2 Reactions of Aliphatic Aldehydes 666
1.1.14.1.3 Formation of Quaternary Stereocenters 667
1.1.14.1.4 Desymmetrization of Cyclohexadienones 670
1.1.14.2 Asymmetric Intermolecular Stetter Reactions Catalyzed by N-Heterocyclic Carbenes 671
1.1.14.2.1 Reactions of Aryl Aldehydes with 1,3-Diarylprop-2-en-1-ones 671
1.1.14.2.2 Reactions of Glyoxamides with Alkylidenemalonates 672
1.1.14.2.3 Reactions of Hetaryl Aldehydes with Arylidenemalonates 674
1.1.14.2.4 Reactions of Hetaryl Aldehydes with Nitroalkenes 675
1.1.14.2.5 Reactions of Aldehydes with Methyl 2-(Acetylamino)acrylate 676
1.1.15 N-Heterocyclic Carbene Catalyzed Reactions of a-Functionalized Aldehydes 680
1.1.15.1 N-Heterocyclic Carbene Catalyzed Generation of Acyl Anions 681
1.1.15.2 Catalytic Generation of Homoenolate Equivalents 681
1.1.15.2.1 Synthesis of .-Lactones 681
1.1.15.2.2 .-Lactams and Related Nitrogen Heterocycles 683
1.1.15.2.3 Formal Homoenolate Additions to Enones: Synthesis of Cyclopentane Derivatives 685
1.1.15.2.4 N-Heterocyclic Carbene Catalyzed Homoenolate Addition to Nitrogen Electrophiles 690
1.1.15.3 N-Heterocyclic Carbene Catalyzed Generation of Enolates 691
1.1.15.3.1 N-Heterocyclic Carbene Catalyzed Generation of Enolates from Enals 691
1.1.15.3.2 Catalytic Generation of Enolates from a-Heteroatomic Aldehydes 693
1.1.15.4 Catalytic Generation of Activated Carboxylates 695
1.1.15.4.1 Catalytic Generation of Activated Carboxylates from a,ß-Epoxyaldehydes 695
1.1.15.4.2 Generation of Activated Carboxylates from a-Haloaldehydes 697
1.1.15.4.3 N-Heterocyclic Carbene Catalyzed Redox Reactions of Cyclopropanecarbaldehydes 697
1.1.15.4.4 N-Heterocyclic Carbene Catalyzed Ring Expansions of Lactams and Lactones 699
1.1.15.4.5 N-Heterocyclic Carbene Catalyzed Ring-Expansion Reactions of Other Heterocycles 700
1.1.15.4.6 N-Heterocyclic Carbene Catalyzed Redox Esterification Reactions of Enals 700
1.1.15.4.7 N-Heterocyclic Carbene Catalyzed Redox Amidations 701
1.1.15.5 Catalytic Generation of a,ß-Unsaturated Acyl Azoliums 702
1.1.15.5.1 Redox Esterification Reactions of Ynals 702
1.1.15.5.2 N-Heterocyclic Carbene Catalyzed Coates--Claisen Reactions 702
1.1.15.6 N-Heterocyclic Carbene Catalyzed Reactions of Aldehyde Surrogates 703
1.1.15.6.1 N-Heterocyclic Carbene Catalyzed Reactions of a'-Hydroxyenones 704
1.1.15.6.2 N-Heterocyclic Carbene Catalyzed Reactions of a,ß-Unsaturated Acylsilanes 705
1.1.15.6.3 N-Heterocyclic Carbene Catalyzed Reactions of Ketenes 705
1.1.15.6.4 Catalytic Generation of a,ß-Unsaturated Acyl Azoliums from Acyl Fluorides or Esters 709
1.1.15.7 Conclusions 710
1.1.16 (Aza)-Morita--Baylis--Hillman Reactions 714
1.1.16.1 Asymmetric Amine-Catalyzed Reactions of Aldehydes 721
1.1.16.1.1 Reactions of Aldehydes with a,ß-Unsaturated Esters 721
1.1.16.1.1.1 Using ß-Isocupreidine as a Bifunctional Catalyst 721
1.1.16.1.2 Reactions of Aldehydes with a,ß-Unsaturated Ketones 722
1.1.16.1.2.1 Using a Bifunctional Amine--Thiourea Catalyst 722
1.1.16.1.2.2 Using Chiral Thioureas as Brønsted Acid Activators with Achiral Amine Nucleophiles 723
1.1.16.1.2.3 Using N-Methylimidazole Nucleophiles with Amino Acids 726
1.1.16.1.2.4 Using a Proline-Derived Secondary Amine Catalyst (Tandem Michael/Morita--Baylis--Hillman Reaction) 728
1.1.16.2 Asymmetric Amine-Catalyzed Reactions of Imines 730
1.1.16.2.1 Reactions of Imines with a,ß-Unsaturated Esters 730
1.1.16.2.1.1 Using ß-Isocupreidine and ß-Isocupreidine-Derived Catalysts 730
1.1.16.2.1.2 Using a Chiral Thiourea Activator with 1,4-Diazabicyclo[2.2.2]octane 733
1.1.16.2.2 Reactions of Imines with a,ß-Unsaturated Ketones and Aldehydes 734
1.1.16.2.2.1 Using ß-Isocupreidine and ß-Isocupreidine-Derived Catalysts 734
1.1.16.2.2.2 Using a Bifunctional 1,1'-Bi-2-naphthol-Derived Catalyst 737
1.1.16.2.2.3 Using l-Proline and Nucleophilic Lewis Bases 738
1.1.16.3 Asymmetric Phosphine-Catalyzed Reactions of Aldehydes 741
1.1.16.3.1 Reactions of Aldehydes with a,ß-Unsaturated Esters 741
1.1.16.3.1.1 Using Bifunctional Phosphine--Thiourea Catalysts 741
1.1.16.3.2 Reactions of Aldehydes with a,ß-Unsaturated Ketones 744
1.1.16.3.2.1 Using A Chiral 1,1'-Bi-2-naphthol-Derived Brønsted Acid Activator with Triethylphosphine 744
1.1.16.3.2.2 Using Bifunctional Phosphine--Thiourea Catalysts 745
1.1.16.4 Asymmetric Phosphine-Catalyzed Reactions of Imines 746
1.1.16.4.1 Reactions of Imines with Acyclic a,ß-Unsaturated Ketones and Aldehydes 747
1.1.16.4.1.1 Using Chiral Bifunctional 2'-Phosphino-1,1'-binaphthalen-2-ol-Based Catalysts 747
1.1.16.4.1.2 Using Chiral Bifunctional and Trifunctional 2'-Phosphino-1,1'-binaphthalen-2-amine-Based Catalysts 754
1.1.16.4.1.3 Using A Chiral Bifunctional 1,1'-Bi-2-naphthol-Derived Aryldiphenylphosphine Catalyst 757
1.1.16.5 Miscellaneous Asymmetric Reactions 758
1.1.17 Phosphine Catalysis 764
1.1.17.1 Nucleophilic Phosphine-Catalyzed Reactions of Alkenes 765
1.1.17.1.1 Phosphine-Catalyzed Michael Addition 765
1.1.17.1.2 Phosphine-Catalyzed Reaction of Alkenes with Electrophiles 766
1.1.17.1.2.1 Phosphine-Catalyzed Regioselective Intramolecular Aldol Reactions 766
1.1.17.1.2.2 Phosphine-Catalyzed Formation of 2,5-Dihydro-1H-pyrroles 768
1.1.17.1.3 Phosphine-Catalyzed Reaction of Alkenes with Electrophile--Nucleophiles 769
1.1.17.2 Nucleophilic Phosphine-Catalyzed Reactions of Allenes 771
1.1.17.2.1 Phosphine-Catalyzed Reaction of Allenes with Nucleophiles 771
1.1.17.2.1.1 Phosphine-Catalyzed .-Umpolung Addition 772
1.1.17.2.1.2 Phosphine-Catalyzed [4 + n] Annulation 774
1.1.17.2.2 Phosphine-Catalyzed Reaction of Allenes with Electrophiles 776
1.1.17.2.2.1 Phosphine-Catalyzed [3 + 2] Annulation with Activated Alkenes 776
1.1.17.2.2.2 Phosphine-Catalyzed [3 + 2] Annulation with N-Tosylimines 777
1.1.17.2.2.3 Phosphine-Catalyzed [3 + 2] Annulation with .-Substituted Allenoates 778
1.1.17.2.2.4 Phosphine-Catalyzed Intramolecular [3 + 2] Annulation in the Synthesis of Diquinanes 779
1.1.17.2.2.5 Phosphine-Catalyzed Intramolecular [3 + 2] Annulation in the Synthesis of Dihydrocoumarins 780
1.1.17.2.2.6 Phosphine-Catalyzed [3 + 2] Annulation of Penta-2,3,4-trienoates 782
1.1.17.2.2.7 Phosphine-Catalyzed [3 + 2] Annulation of Allenyl Aryl Ketones 782
1.1.17.2.2.8 Phosphine-Catalyzed [4 + 2] Annulation with N-Tosylimines 783
1.1.17.2.2.9 Phosphine-Catalyzed [4 + 2] Annulation with Arylidenemalononitriles 785
1.1.17.2.2.10 Phosphine-Catalyzed Formation of Dioxanes, 2H-Pyran-2-ones, and Dihydro-2H-pyran-2-ones 786
1.1.17.2.3 Phosphine-Catalyzed Reaction of Allenes with Electrophile--Nucleophiles 789
1.1.17.2.4 Phosphine-Catalyzed Umpolung-Michael Reaction of Allenoates 791
1.1.17.3 Nucleophilic Phosphine-Catalyzed Reaction of Alkynes 792
1.1.17.3.1 Isomerization of Alkynes to Dienes 792
1.1.17.3.2 Phosphine-Catalyzed Reaction of Alkynes with Nucleophiles 793
1.1.17.3.2.1 Phosphine-Catalyzed a-Umpolung Addition 793
1.1.17.3.2.2 Phosphine-Catalyzed Michael Addition 795
1.1.17.3.3 Phosphine-Catalyzed Reaction of Alkynes with Electrophiles 796
1.1.17.3.4 Phosphine-Catalyzed Reactions of Alkynes with Dinucleophiles 797
1.1.17.4 Nucleophilic Phosphine-Catalyzed Reactions of Protected Morita--Baylis--Hillman Adducts 799
1.1.17.4.1 Phosphine-Catalyzed Reaction of Protected Morita--Baylis--Hillman Adducts with Electrophiles 799
1.1.17.4.1.1 Phosphine-Catalyzed [3 + 2] Annulation with Activated Alkenes 799
1.1.17.4.1.2 Phosphine-Catalyzed [3 + 2] Annulation with N-Tosylimines 801
1.1.17.4.1.3 Phosphine-Catalyzed Intramolecular [3 + 2] Annulation with Activated Alkenes 802
1.1.17.4.2 Phosphine-Catalyzed Reaction of Morita--Baylis--Hillman Acetates with Nucleophiles 803
1.1.17.4.3 Phosphine-Catalyzed Reaction of tert-Butoxycarbonyl-Protected Morita--Baylis--Hillman Adducts with Electrophile--Nucleophiles 803
1.1.17.5 Enantioselective Phosphine Catalysis 804
1.1.17.5.1 Asymmetric Catalysis Using Chiral Phosphines without Additional Functionality 804
1.1.17.5.1.1 [3 + 2] Annulation Using a Chiral 2,5-Dialkyl-7-phosphabicyclo[2.2.1]heptane 804
1.1.17.5.1.2 [3 + 2] Annulation Using a Chiral Phosphepin 805
1.1.17.5.1.3 [3 + 2] Annulation Using a Chiral Ferrocene--Phosphine 806
1.1.17.5.1.4 [3 + 2] Annulation Using Chiral 1,2-Bis[(2-methoxyphenyl)(phenyl)phosphino]ethane 807
1.1.17.5.1.5 [3 + 2] Annulation Using Chiral 1,2-Bis[2,5-diphenylphospholan-1-yl]ethane 808
1.1.17.5.1.6 [4 + 2] Annulation Using a Chiral Phosphepin 809
1.1.17.5.1.7 .-Umpolung Addition Using a Chiral 2,5-Dialkyl-7-phosphabicyclo[2.2.1]heptane 810
1.1.17.5.1.8 .-Umpolung Addition Using a Chiral Phosphepin 810
1.1.17.5.1.9 .-Umpolung Addition Using (1S,1'S,2R,2'R)-1,1'-Di-tert-butyl-2,2'-biphospholane 811
1.1.17.5.1.10 .-Umpolung Addition Using a Chiral Phenylphosphepin 812
1.1.17.5.1.11 .-Umpolung Addition with a Chiral Spiro Phosphepin 813
1.1.17.5.1.12 Homodimerization of Ketenes Using Chiral Dicyclohexyl{1-[2-(diarylphosphino)ferrocenyl]ethyl}phosphines 815
1.1.17.5.2 Enantioselective Catalysis Using Multifunctional Chiral Phosphines 815
1.1.17.5.2.1 [3 + 2] Annulation Using a Chiral a-Amino Acid Derived Phosphine 816
1.1.17.5.2.2 [3 + 2] Annulation Employing a Chiral Phosphinothiourea 817
1.1.17.5.2.3 [3 + 2] Annulation Using a Chiral N-Acyl Aminophosphine 818
1.1.17.5.2.4 Formation of .-Butenolides Using (R)-N-(2'-Diphenylphosphino-1,1'-binaphthalen-2-yl)acetamide 819
1.1.17.5.2.5 [3 + 2] Annulation Using a Chiral Dipeptide Phosphine 820
1.2 Lewis Acids 824
1.2.1 Asymmetric Ketone and Iminium Salt Catalyzed Epoxidations 824
1.2.1.1 Chiral Ketone Catalyzed Epoxidation 824
1.2.1.1.1 Ketones with an Attached Chiral Moiety 825
1.2.1.1.2 Carbocyclic Ketones 826
1.2.1.1.3 C2-Symmetric Binaphthyl-Based and Related Ketones 827
1.2.1.1.4 Ammonium and Bis(ammonium) Ketones 828
1.2.1.1.5 Bicyclo[3.2.1]octan-3-ones and Related Ketones 829
1.2.1.1.6 Carbohydrate-Based and Related Ketones 830
1.2.1.1.7 Synthetic Applications of (3aR,4'S,7aR)-2,2,2',2'-Tetramethyldihydrospiro[[1,3]dioxolo[4,5-c]pyran-6,4'-[1,3]dioxolan]-7(7aH)-one 849
1.2.1.2 Iminium Salt Catalyzed Epoxidation 860
1.2.1.2.1 Dihydroisoquinoline-Based Iminium and Oxaziridinium Salts 861
1.2.1.2.2 Binaphthylazepinium-Based and Related Iminium Salts 863
1.2.1.2.3 Biphenylazepinium-Based Iminium Salts 865
1.2.1.2.4 Acyclic Iminium Salts 867
1.2.1.3 Conclusions 867
1.2.2 Lewis Acid Organocatalysts Other than Ketone and Iminium Salt Catalysts 872
1.2.2.1 Chiral Silane Lewis Acid Catalysts 872
1.2.2.1.1 Trialkylsilyl-Based Catalysts 873
1.2.2.1.1.1 Chiral Trialkylsilyl Catalysts 873
1.2.2.1.1.2 Trialkylsilyl Catalysts with a Chiral Counteranion 875
1.2.2.1.2 Hypervalent Silicon Catalysts 879
1.2.2.1.2.1 Silicon Atom Included in the Reaction Partner 879
1.2.2.1.2.2 Silicon Atom Not Included in the Reaction Partner 892
1.2.2.2 Phosphonium Salt Organocatalysts 898
1.2.2.3 Carbenium Cation Based Catalysts 901
1.2.2.4 Ionic Liquid Catalysts 905
1.2.2.5 Other Lewis Acidic Organocatalysts 906
Keyword Index 912
Author Index 960
Abbreviations 990
List of All Volumes 996

Abstracts


1.1.1 Enamine Catalysis of Intramolecular Aldol Reactions


X.-W. Wang, Y. Wang, and J. Jia

In this review, organocatalytic intramolecular aldol reactions are classified into three different types according to their enolization mode: enolendo aldolizations, enolexo aldolizations, and transannular aldolizations. The enantioselective enamine catalysis of these reactions using chiral, enantiomerically pure primary and secondary amines as catalysts is discussed. Following the logic of this volume, the chapter focuses on the more synthetically useful approaches.

Keywords: intramolecular • aldol • enamine • catalysis • enolendo • enolexo • transannular

1.1.2 Enamine Catalysis of Intermolecular Aldol Reactions


S. M. Yliniemelä-Sipari, A. Piisola, and P. M. Pihko

This review discusses enamine catalysis of intermolecular aldol reactions. The organocatalytic approach to these carbon—carbon bond-forming reactions between enolizable carbonyl compounds and aldehydes or ketones is discussed from a practical standpoint, and is illustrated with examples from the literature. The scope and the current limitations of the protocols are presented. The origins of the limitations, based on chemoselectivity problems related to the activation of starting materials, are also described.

Keywords: intermolecular aldol reaction • ganocatalysis asymmetric synthesis • enamine catalysis • organocataltsis

1.1.3 Enamine Catalysis of Mannich Reactions


M. Benohoud and Y. Hayashi

Chiral primary and secondary amines catalyze the Mannich reaction of imines and carbonyl compounds to diastereoselectively generate β-amino carbonyl compounds with excellent enantioselectivity. The design of amine catalysts and the judicious choice of the substituent on the nitrogen of the imine allows the selective formation of the syn- or anti-Mannich products. The imine component can be preformed or generated in situ from an amine and an aldehyde or by desulfonylation of α-amido sulfones. Imines can bear aromatic, carbamate, or sulfonate N-substituents. Since the initial development of amine-catalyzed Mannich reactions, the scope of carbonyl compounds has been extended from simple acetone to cyclic ketones, ketones substituted with heteroatoms, and aldehydes such as acetaldehyde, which is known to be difficult to handle because of its high reactivity. Mannich adducts formed in these asymmetric organocatalyzed processes are generally obtained with good yields and high diastereo- and enantioselectivities. There are several noteworthy features of this reaction: (1) the reactions are operationally simple; (2) water and air do not need to be strictly excluded; (3) amine catalysts are available, or can be prepared, in both enantiomeric forms; (4) in several procedures the catalyst loading can be reduced to <5 mol%; and (5) high enantioselectivities can be obtained. The asymmetric amine-catalyzed Mannich reaction is a practical and useful method for the synthesis of nitrogen-containing chiral molecules.

Keywords: asymmetric Mannich reaction • chiral amines • enamines • imines • β-amino carbonyls

1.1.4 Enamine Catalysis of Michael Reactions


N. Mase

This chapter addresses significant achievements in asymmetric synthesis focusing on enamine-based organocatalytic direct Michael reactions. The description of methods for Michael reactions is subdivided on the basis of various classes of intramolecular, intermolecular, and domino reactions. In addition, these are further subdivided on the basis of donors (nucleophiles) and acceptors (electrophiles): ketones and aldehydes as the donors and α,β-unsaturated carbonyl compounds, nitroalkenes, vinyl sulfones, and vinylphosphonates as the acceptors.

 Keywords: conjugate addition reactions • domino reactions • enamine catalysis • enamines • iminium catalysis • intermolecular reactions • intramolecular reactions • Michael acceptors • Michael addition • Michael donors • one-pot process • organocatalysis • reductive Michael reactions

1.1.5 Enamine Catalysis of α-Functionalizations and Alkylations


S. Mukherjee

Since the turn of this century, asymmetric enamine catalysis has given rise to a plethora of synthetically useful transformations. This section describes some of the most efficient and practical methods for enamine catalyzed asymmetric α-functionalizations and alkylations. The first part of this review deals with the introduction of different heteroatom functionalities (e.g., nitrogen, oxygen, halogens, sulfur, or selenium) at the α-position of aldehydes and ketones, whereas methods for the formation of C—C bonds (e.g., alkylation, allylation, or arylation) are described in the latter part.

Keywords: alkylation • allylation • arylation • asymmetric catalysis • enamine • α-functionalization • organocatalysis

1.1.6 SOMO and Radical Chemistry in Organocatalysis


D. W. C. MacMillan and T. D. Beeson

This chapter describes the design and development of singly occupied molecular orbital (SOMO) catalysis. This new mode of organocatalytic activation is founded upon the mechanistic hypothesis that the one-electron oxidation of a transient enamine intermediate, derived from a carbonyl compound and a chiral amine catalyst, will render a 3π-electron SOMO radical cation that is subject to enantiofacial discrimination. This chiral SOMO-activated species can readily combine with SOMO nucleophiles in unique asymmetric bond constructions to enable previously unknown transformations. Many SOMO nucleophiles have been shown to participate with radical cations and, correspondingly, a diverse range of chemistry, such as carbon—carbon and carbon—heteroatom bond formations, formal [4 + 2] cycloadditions, and polyene cyclizations, has been implemented.

Keywords: SOMO • nucleophile • radical cation • iminium • enamine • aldehydes • ketones • carbon—carbon bond formation • carbon—heteroatom bond formation • cycloaddition • cyclization

1.1.7 Iminium Catalysis


D. W. C. MacMillan and A. J. B. Watson

Chiral amine catalysts condense with α,β-unsaturated carbonyl compounds to generate transient chiral iminium ions. These activated intermediates are then able to participate in enantioselective carbon—carbon and carbon—heteroatom bond formation with a broad range of nucleophilic partners.

 Keywords: aldehydes • amines • asymmetric catalysis • asymmetric synthesis • chiral compounds • chirality • conjugate addition • diastereoselectivity • enals • enamines • enones • iminium salts • Michael addition • nucleophilic addition

1.1.8 Iminium Catalysis with Primary Amines


Y. Liu and P. Melchiorre

Advances in catalytic, enantioselective additions of a variety of nucleophiles to enals and enones under the iminium activation of chiral primary amines are described. Primary amine catalysis offers the unique possibility of chemical reactions between sterically demanding partners, thus overcoming the inherent difficulties of chiral secondary amines in generating congested covalent intermediates. This has allowed for the expansion of iminium catalysis to include difficult carbonyl substrates such as α,β-unsaturated ketones and α-branched α,β-unsaturated aldehydes. The selected methods represent the state of the art in the rapidly evolving area of iminium catalysis with primary amines, which provides a suitable synthetic tool to enantioselectively functionalize hindered unsaturated carbonyl compounds at their α- and β-positions.

Keywords: aldehydes • amines • asymmetric catalysis • asymmetric synthesis • conjugate addition • cycloaddition • ketones • iminium catalysis • organocatalysis

1.1.9 Applications of Aminocatalysis in Target-Oriented Synthesis


M. Christmann

This chapter covers applications of aminocatalysis to the synthesis of natural products and active pharmaceutical ingredients. The activation modes discussed include enamine activation, iminium activation, and dienamine activation. Following the organocatalytic key step, a detailed description of the completion of the individual syntheses is provided. Finally, an outlook on future prospects concludes this section.

Keywords: natural products • total synthesis • Mannich reaction • Aldol reaction • Michael reaction • prolines • enamines • Diels–Alder reaction • iminium salts • carbonyl compounds • catalysts • drugs

1.1.10 Tertiary Amine and Phosphine-Catalyzed Reactions of Ketenes and α-Halo Ketones


S. Chen, E. C. Salo, and N. J. Kerrigan

Although the...

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Aminocatalysis • Asymmetric • asymmetric enamine catalysis • Asymmetric Organocatalysis • Carbene-Catalyzed • Carbene-Catalyzed Reaction • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • Chiral compounds • DMAP analogues • Enamine Catalysis • Iminium Catalysis • Lewis acids • Lewis base • Lewis Bases • Method • Organic Chemistry • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • organocatalyst • Phosphine Catalysis • Phosphine-Catalyzed Reactions • Radical chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • SOMO catalysis • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • Tertiary Amine-Catalyzed Reaction • thiazolium salts
ISBN-10 3-13-178991-3 / 3131789913
ISBN-13 978-3-13-178991-4 / 9783131789914
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 38,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95