Science of Synthesis Knowledge Updates 2010 Vol. 4 (eBook)
506 Seiten
Thieme (Verlag)
978-3-13-178691-3 (ISBN)
Molybdenum, and Tungsten, Silicon Compounds, Aluminum Compounds, Gallium Compounds, Barium Compounds, Lithium Compounds, Sodium Compounds, Pyridazines, Carboxylic Acids, Nitrones and Cyclic Analogue, Amino Compounds.
Science of Synthesis: Knowledge Updates 2010/4 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 20
Table of Contents 22
Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) 36
2.4 Product Class 4: Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten 36
2.4.12 Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten 36
2.4.12.1 Method 1: Synthesis of Tricarbonylmetal–Arene Complexes by Arene Modification 36
2.4.12.1.1 Variation 1: Via Nucleophilic Substitution 36
2.4.12.1.2 Variation 2: Under Thermal Conditions Chromium Migration
2.4.12.2 Method 2: Synthesis of Tricarbonylmetal–Arene Complexes by Side-Chain Modification 42
2.4.12.2.1 Variation 1: Via Cycloaddition 42
2.4.12.2.2 Variation 2: Via Radical Coupling 43
2.4.12.3 Method 3: Synthesis of Optically Active Arene Complexes 49
2.4.12.3.1 Variation 1: Diastereo- and Enantioselective Lithiation–Electrophilic Addition Reactions 50
2.4.12.3.2 Variation 2: Palladium-Catalyzed Reactions Catalytic Asymmetric Synthesis
2.4.12.4 Method 4: (Arene)tricarbonylchromium(0) Complexes as Catalysts 54
2.4.12.5 Method 5: (Arene)tricarbonylchromium(0) Complexes as Chiral Ligands 55
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 60
4.4 Product Class 4: Silicon Compounds 60
4.4.26.7 1-Diazo-1-silylalkanes 60
4.4.26.7.1 Synthesis of 1-Diazo-1-silylalkanes 60
4.4.26.7.1.1 Method 1: Synthesis of 1-Diazo-1-silylalkanes from Diazoacetates 60
4.4.26.7.1.2 Method 2: Reaction of Metalated Diazo(trimethylsilyl)methane with Electrophiles 62
4.4.26.7.1.2.1 Variation 1: Hydroxyalkylation of Diazo(trimethylsilyl)methane 62
4.4.26.7.1.2.2 Variation 2: Borylation of Diazo(trimethylsilyl)methane 63
4.4.26.7.1.2.3 Variation 3: Sulfidation of Diazo(trimethylsilyl)methane 63
4.4.26.7.1.2.4 Variation 4: Phosphinylation of Diazo(trimethylsilyl)methane 63
4.4.26.7.2 Applications of 1-Diazo-1-silylalkanes 64
4.4.26.7.2.1 Method 1: Diazo(trimethylsilyl)methane as a One-Carbon Unit 65
4.4.26.7.2.2 Method 2: Diazo(trimethylsilyl)methane as a C--N--N Unit 80
4.4.26.7.2.3 Method 3: Applications of Diazo(trimethylsilyl)methane in the Generation of Alkylidene Carbenes 83
4.4.26.7.2.4 Method 4: Applications of 2-Diazo-2-(trimethylsilyl)ethanols 92
4.4.26.7.2.5 Method 5: Applications of Diazo(silyl)acetates 95
4.4.26.7.2.6 Method 6: Applications of Diazo(silyl)methyl Ketones 99
Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be···Ba) 104
7.1 Product Class 1: Aluminum Compounds 104
7.1.2.44 Aluminum Hydrides 104
7.1.2.44.1 Method 1: Amine– and Amide–Aluminate Complexes Prepared from Lithium Aluminum Hydride and Amines 104
7.1.2.44.2 Method 2: Sodium Bis(2-methoxyethoxy)aluminum Hydride 104
7.1.2.44.3 Method 3: Sodium Bis(2-methoxyethoxy)aluminum Hydride with Pyrrolidine and Potassium tert-Butoxide 105
7.1.2.44.4 Method 4: Diisobutylaluminum Hydride with Metal Alkoxides 107
7.1.2.44.5 Method 5: Diisobutylaluminum Hydride with Lithium Amides 107
7.1.2.44.6 Method 6: Diisobutylaluminum Hydride with Nickel Compounds 108
7.1.2.44.7 Method 7: Trivalent Aluminum Trihydride–Amine Complexes 111
7.1.3.18 Aluminum Halides 114
7.1.3.18.1 Method 1: Aluminum Halides with Amino Ligands 114
7.1.3.18.2 Method 2: Aluminum Halides with Chiral Alkoxide Ligands 116
7.1.3.18.3 Method 3: Aluminum Halides Coordinated with Thiols or Sulfides 123
7.1.3.18.4 Method 4: Aluminum Halides with Onium Salts 123
7.1.3.18.5 Method 5: Aluminum Bromide with Organosilicon Halides 124
7.1.3.18.6 Method 6: Aluminum Triiodide 125
7.1.9.11 Triorganoaluminum Compounds 128
7.1.9.11.1 Method 1: Applications in Addition to C--C Multiple Bonds 128
7.1.9.11.1.1 Variation 1: Carboalumination of Alkenes and Alkynes 128
7.1.9.11.1.2 Variation 2: Conjugate Addition 132
7.1.9.11.2 Method 2: Applications in Addition Reactions to Carbon--Heteroatom Multiple Bonds 137
7.1.9.11.2.1 Variation 1: Reaction with Carbonyl Substrates 137
7.1.9.11.3 Method 3: Applications in Activation of Inert Chemical Bonds 139
7.1.9.11.3.1 Variation 1: Alkylative Defluorination 139
7.1.9.11.3.2 Variation 2: Carbon--Hydrogen Bond Activation 142
7.2 Product Class 2: Gallium Compounds 148
7.2.8 Gallium Compounds 148
7.2.8.1 Method 1: Synthesis of Organogallium(III) Complexes Containing Gallium--Gallium Bonds 148
7.2.8.2 Method 2: Synthesis of Organogallium Complexes Containing a Bond between Gallium and a Transition Metal 149
7.2.8.3 Method 3: Synthesis of Organogallium(III) Halides 150
7.2.8.4 Method 4: Synthesis of Organogallium(III) Complexes Containing a Bond between Gallium and a Group 16 Element 151
7.2.8.5 Method 5: Synthesis of Organogallium(III) Complexes Containing a Bond between Gallium and a Group 15 Element 152
7.2.8.6 Method 6: Synthesis of Triorganogallium(III) Complexes 154
7.2.8.7 Method 7: Synthesis of Organogallium(I) Complexes 155
7.3 Product Class 3: Indium Compounds 160
7.3.1 Product Subclass 1: Allylic Indium Complexes 160
Synthesis of Product Subclass 1 161
7.3.1.1 Method 1: Addition of Indium Metal to Allylic Halides 161
7.3.1.1.1 Variation 1: In Ionic Liquids 161
7.3.1.1.2 Variation 2: Allylic Indium Complex from 4-Bromobuta-1,2-diene 161
7.3.1.1.3 Variation 3: Allylic Diindium Complex 162
7.3.1.2 Method 2: Reaction of Indium(I) Salts with Allylic Compounds 162
7.3.1.2.1 Variation 1: Reaction of Allylboronates with Catalytic Indium(I) Iodide 163
7.3.1.2.2 Variation 2: Electrochemical Processes 163
7.3.1.3 Method 3: Transmetalation from Allylic Stannanes to Indium(III) Chloride 164
7.3.1.4 Method 4: Transmetalation from p-Allylpalladium and p-Allylnickel Complexes 165
7.3.1.4.1 Variation 1: Transmetalation from p-Allylpalladium Complexes 165
7.3.1.4.2 Variation 2: Transmetalation from p-Allylnickel Complexes 167
7.3.1.5 Method 5: Hydroindation of 1,3-Dienes 168
Applications of Product Subclass 1 in Organic Synthesis 169
7.3.1.6 Method 6: Regioselective Allylation of Carbonyl Compounds 169
7.3.1.7 Method 7: Diastereoselective Allylation of Carbonyl Compounds 170
7.3.1.7.1 Variation 1: Allylation of Aldehydes Bearing Coordinative Substituents 171
7.3.1.7.2 Variation 2: Allylation with Allylindium Bearing Coordinative Substituents 172
7.3.1.8 Method 8: Enantioselective Allylation of Carbonyl Compounds 173
7.3.1.9 Method 9: Allylation of Imines 174
7.3.1.9.1 Variation 1: Diastereoselective Allylation 174
7.3.1.9.2 Variation 2: Enantioselective Allylation 174
7.3.1.10 Method 10: Carboindation of Carbon--Carbon Multiple Bonds 175
7.3.1.11 Method 11: Cross-Coupling Reaction 177
7.3.1.12 Method 12: Photolytic Radical Reaction 177
7.3.2 Product Subclass 2: Propargylic/Allenylic Indium Complexes 178
Synthesis of Product Subclass 2 178
7.3.2.1 Method 1: Addition of Indium Metal to Propargylic Halides 178
7.3.2.2 Method 2: Insertion of Indium(I) Halide into Propargylic Halides 179
7.3.2.3 Method 3: Transmetalation from Organopalladium Complexes 179
Applications of Product Subclass 2 in Organic Synthesis 180
7.3.2.4 Method 4: Addition to Carbonyl and Imine Compounds 180
7.3.2.5 Method 5: Coupling Reaction 181
7.3.3 Product Subclass 3: Indium Enolates 182
Synthesis of Product Subclass 3 182
7.3.3.1 Method 1: Insertion of Indium Metal or Indium(I) Halides into a-Halo Esters 182
Applications of Product Subclass 3 in Organic Synthesis 182
7.3.3.2 Method 2: Reformatsky-Type Reactions 182
7.3.3.3 Method 3: 1,4-Addition 183
7.3.4 Product Subclass 4: Arylindium(III) Complexes 183
Synthesis of Product Subclass 4 183
7.3.4.1 Method 1: Transmetalation 183
7.3.4.2 Method 2: Insertion of Indium Metal into Aryl Iodides 183
Applications of Product Subclass 4 in Organic Synthesis 184
7.3.4.3 Method 3: Nucleophilic Substitution 184
7.3.4.4 Method 4: Cross-Coupling Reactions 185
7.3.4.4.1 Variation 1: Palladium-Catalyzed Cross-Coupling Reactions 185
7.3.4.4.2 Variation 2: Copper-Catalyzed Three-Component Coupling Reactions 186
7.3.5 Product Subclass 5: Alkyl- and Alkenylindium(III) Complexes 187
Synthesis of Product Subclass 5 187
7.3.5.1 Method 1: Transmetalation 187
7.3.5.2 Method 2: Alkenylindium via Hydroindation 187
Applications of Product Subclass 5 in Organic Synthesis 187
7.3.5.3 Method 3: Allylic Substitution 187
7.3.5.4 Method 4: Cross-Coupling Reactions 188
7.3.5.4.1 Variation 1: Cross Coupling with Halides or Pseudohalides 188
7.3.5.4.2 Variation 2: Carbonylative Cross-Coupling Reaction 189
7.3.5.4.3 Variation 3: Radical Coupling Reaction 189
7.3.6 Product Subclass 6: Tetraorganoindates 190
Synthesis of Product Subclass 6 190
7.3.6.1 Method 1: Reaction of Indium Halides with Organolithium or Grignard Reagents 190
Applications of Product Subclass 6 in Organic Synthesis 190
7.3.6.2 Method 2: Allylic Substitution 190
7.3.6.3 Method 3: Ring Opening of Epoxides 191
7.3.6.4 Method 4: Cross-Coupling Reactions 191
7.3.7 Product Subclass 7: Indium(III) Chloride 192
Applications of Product Subclass 7 in Organic Synthesis 193
7.3.7.1 Method 1: Allylation and Alkylation 193
7.3.7.1.1 Variation 1: Allylation and Alkenylation with Organosilanes 193
7.3.7.1.2 Variation 2: Sakurai–Hosomi-Type Allylation 193
7.3.7.1.3 Variation 3: Alkylation of 1,3-Dicarbonyl Compounds 194
7.3.7.2 Method 2: Cycloaddition Reactions 195
7.3.7.2.1 Variation 1: Enantioselective Diels–Alder Reaction 195
7.3.7.2.2 Variation 2: Ketone–Ene Reaction 195
7.3.7.3 Method 3: Prins-Type Reactions 195
7.3.7.4 Method 4: Mukaiyama Aldol Reaction 196
7.3.7.5 Method 5: Mannich-Type Reaction 197
7.3.7.6 Method 6: Friedel–Crafts Reaction 197
7.3.7.7 Method 7: Intramolecular Cyclization 198
7.3.7.8 Method 8: Reduction 199
7.3.7.9 Method 9: Chlorination of Alcohols 200
7.3.8 Product Subclass 8: Indium(III) Bromide 200
Applications of Product Subclass 8 in Organic Synthesis 201
7.3.8.1 Method 1: Reductive Aldol Reaction 201
7.3.8.2 Method 2: Friedel–Crafts Acylation of Arenes 201
7.3.8.3 Method 3: Activation of Silyl Enolates 202
7.3.8.3.1 Variation 1: Addition/Coupling with Alkynes 202
7.3.8.3.2 Variation 2: Alkylation by Alkyl Chlorides 202
7.3.8.4 Method 4: Carbonyl Alkynylation 203
7.3.8.5 Method 5: Intramolecular Cyclization 203
7.3.8.5.1 Variation 1: Indole Synthesis 203
7.3.8.5.2 Variation 2: Intramolecular Michael Addition 204
7.3.9 Product Subclass 9: Indium(III) Iodide 204
Synthesis of Product Subclass 9 205
7.3.9.1 Method 1: Reaction of Indium Metal with Iodine 205
Applications of Product Subclass 9 in Organic Synthesis 205
7.3.9.2 Method 2: a-Alkylation of Carbonyl Compounds 205
7.3.9.3 Method 3: Strecker Reaction 206
7.3.9.4 Method 4: Transesterification 206
7.3.9.5 Method 5: Allylation of Ketones 207
7.3.9.6 Method 6: Ring Opening of Aziridines 207
7.3.10 Product Subclass 10: Indium(III) Trifluoromethanesulfonate 208
Applications of Product Subclass 10 in Organic Synthesis 208
7.3.10.1 Method 1: Allylation 208
7.3.10.1.1 Variation 1: Allylation of Ketones and Imines 208
7.3.10.1.2 Variation 2: Enantioselective Allylation 209
7.3.10.2 Method 2: Reaction of Alkynes 210
7.3.10.2.1 Variation 1: Addition of ß-Dicarbonyl Compounds to Unactivated Alkynes 210
7.3.10.2.2 Variation 2: Asymmetric Addition of Enamines to Alkynes 211
7.3.10.2.3 Variation 3: Conia-Ene Reaction 212
7.3.10.3 Method 3: Rearrangement 213
7.3.10.4 Method 4: Diels–Alder Reaction 213
7.3.10.5 Method 5: Retro-Claisen Condensation 214
7.3.10.6 Method 6: Cycloaddition 215
7.3.10.7 Method 7: Carbonyl-Ene Reaction 215
7.3.11 Product Subclass 11: Indium(III) Trifluoromethanesulfonimide 216
Applications of Product Subclass 11 in Organic Synthesis 216
7.3.11.1 Method 1: Addition of 1,3-Dicarbonyl Compounds to Alkynes 216
7.3.11.2 Method 2: Alkylation of Pyrroles 217
7.3.12 Product Subclass 12: Indium(I) Iodide 218
Synthesis of Product Subclass 12 218
7.3.12.1 Method 1: Reaction of Indium Metal with Iodine 218
Applications of Product Subclass 12 in Organic Synthesis 218
7.3.12.2 Method 2: Cleavage of Diselenides and Disulfides 218
7.3.12.2.1 Variation 1: Synthesis of Unsymmetrical Diorganyl Selenides and Related Compounds 218
7.3.12.2.2 Variation 2: Synthesis of Vinyl Selenides 219
7.3.12.2.3 Variation 3: Aziridine Ring Opening 219
7.3.13 Product Subclass 13: Zerovalent Indium 219
Applications of Product Subclass 13 in Organic Synthesis 220
7.3.13.1 Method 1: Reduction 220
7.3.13.1.1 Variation 1: Reduction of Conjugated Alkenes 220
7.3.13.1.2 Variation 2: Reduction of Nitro and N-Oxide Groups and Hydroxylamines 220
7.3.13.2 Method 2: Radical Reaction 221
7.3.13.2.1 Variation 1: Intermolecular Reaction 221
7.3.13.2.2 Variation 2: Intramolecular Reaction 221
7.3.13.3 Method 3: Elimination 224
7.9 Product Class 9: Barium Compounds 230
7.9.5 Barium Compounds 230
7.9.5.1 Applications of Barium in Organic Synthesis 230
7.9.5.1.1 Method 1: Reactions of Propargylic Bromides with Carbonyl Compounds 230
7.9.5.1.2 Method 2: Reactions of Propargylic Bromides with Imines 231
7.9.5.1.3 Method 3: Reactions of a-Chloro Ketones with Aldehydes 232
7.9.5.2 Applications of Barium Hydride in Organic Synthesis 233
7.9.5.2.1 Method 1: Homocoupling of Enones 233
7.9.5.2.1.1 Variation 1: Cross Coupling of Enones 234
7.9.5.3 Applications of Barium Alkoxides in Organic Synthesis 235
7.9.5.3.1 Method 1: Reactions of Ketones with Aldehydes 235
7.9.5.3.1.1 Variation 1: Reactions of Ketones with Enones 236
7.9.5.3.2 Method 2: Aldol Reactions 237
7.9.5.3.3 Method 3: Mannich-Type Reactions 239
7.9.5.3.4 Method 4: Diels–Alder-Type Reactions 241
Volume 8: Compounds of Group 1 (Li···Cs) 244
8.1 Product Class 1: Lithium Compounds 244
8.1.28 The Catalytic Use of Lithium Compounds for Bond Formation 244
8.1.28.1 Lithium Acetate and Related Compounds as Lewis Base Catalysts 244
8.1.28.1.1 Method 1: Catalytic C--C Bond Formation of Silyl Enolates 244
8.1.28.2 Use of Lithium Aryloxides as Brønsted Base Catalysts 246
8.1.28.2.1 Method 1: Catalytic C--C Bond Formation via In Situ Enolate Generation 246
8.1.28.3 Use of Lithium Binaphtholates as Chiral Catalysts 248
8.1.28.3.1 Method 1: Catalytic Asymmetric Cyanation Reactions 248
8.1.28.3.2 Method 2: Catalytic Asymmetric Mannich-Type Reactions 250
8.1.28.3.3 Method 3: Catalytic Asymmetric 1,4-Addition Reactions 251
8.1.28.3.4 Method 4: Catalytic Asymmetric Synthesis of 2,2-Disubstituted Epoxides and Oxetanes 254
8.1.28.3.5 Method 5: Catalytic Asymmetric Aldol Reaction 256
8.2 Product Class 2: Sodium Compounds 258
8.2.16 The Catalytic Use of Sodium Compounds for Bond Formation 258
8.2.16.1 Method 1: Lewis Base Catalysis 259
8.2.16.1.1 Variation 1: Sodium Methoxide Catalysis of the Mukaiyama Aldol Reaction 259
8.2.16.1.2 Variation 2: Sodium Acetate Catalysis of Michael Reactions 259
8.2.16.1.3 Variation 3: Sodium–Phosphine Oxide for the Activation of a Trimethylsilyl Enolate 260
8.2.16.1.4 Variation 4: Sodium Formate for the Synthesis of Trimethysilyl-Protected (Trichloromethyl)carbinols 261
8.2.16.1.5 Variation 5: Sodium Salt of L-Phenylglycine for the Cyanosilylation of Ketones 262
8.2.16.2 Method 2: Lewis Acid Catalysis 262
8.2.16.2.1 Variation 1: Use of Sodium Tetrafluoroborate 263
8.2.16.3 Method 3: Acid–Base Catalysis 263
8.2.16.3.1 Variation 1: Sodium Tetramethoxyborate for Michael Reaction 263
8.2.16.3.2 Variation 2: Lanthanum Trisodium Tris(binaphtholate) Complex for Michael Reaction 264
8.2.16.3.3 Variation 3: Gallium Sodium Bis(binaphtholate)/Sodium tert-Butoxide Combination for Michael Reaction 265
8.2.16.3.4 Variation 4: Aluminum Lithium Bis(binaphtholate)/Sodium tert-Butoxide for Michael Reaction 266
8.2.16.3.5 Variation 5: Samarium Trisodium Tris(binaphtholate) for Michael Reaction–Protonation 267
8.2.16.3.6 Variation 6: Lanthanum Trilithium Tris(biphenoxide)/Sodium Iodide for Cyclopropanation of Enones 268
8.2.16.3.7 Variation 7: Neodymium/Sodium–Amidophenol Complex for anti-Selective Henry Reaction 269
Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms 272
16.8 Product Class 8: Pyridazines 272
16.8.5 Pyridazines 272
16.8.5.1 Synthesis by Ring-Closure Reactions 274
16.8.5.1.1 By Formation of Two N--C Bonds 274
16.8.5.1.1.1 Fragments C--C--C--C and N--N 274
16.8.5.1.1.1.1 Method 1: Condensation of 1,4-Diketones with Hydrazine 274
16.8.5.1.1.1.2 Method 2: Condensation of 4-Oxoalkanoic Acid Derivatives with Hydrazine 276
16.8.5.1.1.1.3 Method 3: Condensation of Maleic Anhydrides with Hydrazine 276
16.8.5.1.1.1.4 Method 4: Condensation of 4-Oxo Acids with Hydrazine, with Subsequent Oxidation by Copper(II) Salts 277
16.8.5.1.1.1.5 Method 5: Isomerization of Alk-2-yne-1,4-diols Followed by Condensation with Hydrazine 278
16.8.5.1.1.1.6 Method 6: Reaction of a-Oxo Acids with Aryl Methyl Ketones To Give 4-Oxobut-2-enoic Acids, Followed by Condensation with Hydrazine 279
16.8.5.1.1.1.7 Method 7: Synthesis from Methyl 3,3,3-Trifluoro-2-oxopropanoate and Hydrazine 279
16.8.5.1.1.1.8 Method 8: Synthesis from Pyran-2-one and Hydrazine, with Subsequent Oxidation 280
16.8.5.1.2 By Formation of One N--C and One C--C Bond 281
16.8.5.1.2.1 Fragments N--N--C--C and C--C 281
16.8.5.1.2.1.1 Method 1: Michael-Type Addition/Heterocyclization of Active Methylene Compounds to 1,2-Diazabuta-1,3-dienes 281
16.8.5.1.2.1.2 Method 2: Synthesis from Sodium 1,2-Dihydroxyethane-1,2-disulfonate 283
16.8.5.2 Synthesis by Ring Transformation 284
16.8.5.2.1 Formal Exchange of Ring Members with Retention of Ring Size 284
16.8.5.2.1.1 Method 1: Diels–Alder Reaction of 1,2,4,5-Tetrazine and Ketene Acetals 284
16.8.5.2.1.2 Method 2: Diels–Alder Reaction of 1,2,4,5-Tetrazines and Ketones 285
16.8.5.2.1.3 Method 3: Diels–Alder Reaction of 1,2,4,5-Tetrazines and Alkynylboronic Esters 286
16.8.5.2.1.4 Method 4: Diels–Alder Reaction of Nitrogen Heterocycle Substituted Tetrazines and Alkynyltrifluoroborates 287
16.8.5.2.1.5 Method 5: Diels–Alder Reaction of 1,2,4,5-Tetrazines and Enol Ethers or Alkenes 289
16.8.5.3 Synthesis by Substituent Modification 291
16.8.5.3.1 Substitution of Existing Substitutents 291
16.8.5.3.1.1 Method 1: Synthesis from Chloropyridazines or Chloropyridazinones via Palladium-Mediated Suzuki Coupling 291
16.8.5.3.1.2 Method 2: Synthesis from Chloropyridazines or Chloropyridazin-3(2H)-ones via Palladium-Mediated Stille Coupling 299
16.8.5.3.1.3 Method 3: Synthesis from Chloropyridazines or Chloropyridazin-3(2H)-ones via Palladium-Mediated Sonogashira Coupling 301
16.8.5.3.1.4 Method 4: Synthesis from Halopyridazines or Halopyridazin-3(2H)-ones via Palladium-Mediated Heck Coupling 303
16.8.5.3.1.5 Method 5: Palladium-Catalyzed Cross-Coupling Reactions of Pyridazine N-Oxides with Aryl Chlorides, Bromides, and Iodides 303
16.8.5.3.1.6 Method 6: Other Nucleophilic Substitutions 305
Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides Carboxylic Acids and Acid Salts
20.2 Product Class 2: Carboxylic Acids 312
20.2.1.8.13 Synthesis with Retention of the Functional Group (Update 1) 312
20.2.1.8.13.1 Method 1: Synthesis by Conjugate Addition 312
20.2.1.8.13.1.1 Variation 1: Conjugate Addition of Organometallic Reagents 312
20.2.1.8.13.1.2 Variation 2: Conjugate Addition of Thiols 313
20.2.1.8.13.1.3 Variation 3: Asymmetric Conjugate Addition 314
20.2.1.8.14 Synthesis with Retention of the Functional Group (Update 2) 318
20.2.1.8.14.1 Synthesis by Alkylation or Arylation 318
20.2.1.8.14.1.1 Method 1: Direct a-Alkylation or -Arylation of Carboxylic Acids 318
20.2.1.8.14.1.2 Method 2: Diastereoselective Alkylations 319
20.2.1.8.14.1.3 Method 3: Alkylation of Alkenoic Acids 320
20.2.1.8.14.1.4 Method 4: Synthesis via Carboxylic Acid Derivatives 321
20.2.1.8.14.1.4.1 Variation 1: Alkylation and Arylation of Esters 322
20.2.1.8.14.1.4.2 Variation 2: Chiral Auxiliaries: Tertiary Stereocenters 324
20.2.1.8.14.1.4.3 Variation 3: Chiral Auxiliaries: Quaternary Stereocenters 328
Volume 21: Three Carbon--Heteroatom Bonds: Amides and Derivatives Peptides
21.15 Product Class 15: Polyamides 336
21.15.1 Product Subclass 1: Aliphatic Polyamides 336
21.15.1.1 Synthesis of Product Subclass 1 336
21.15.1.1.1 Method 1: Interfacial Polymerization 336
21.15.1.1.2 Method 2: Ring-Opening Polymerization 337
21.15.1.1.3 Method 3: Melt Polymerization 338
21.15.2 Product Subclass 2: Aliphatic–Aromatic Polyamides 338
21.15.2.1 Synthesis of Product Subclass 2 338
21.15.2.1.1 Method 1: Use of Diacid Dichlorides 338
21.15.2.1.2 Method 2: Melt Polymerization 339
21.15.3 Product Subclass 3: Aromatic Polyamides 340
21.15.3.1 Synthesis of Product Subclass 3 340
21.15.3.1.1 Method 1: Use of Diacid Dichlorides 340
21.15.3.1.2 Method 2: Use of Active Esters and Amides 341
21.15.3.1.3 Method 3: Direct Polymerization 342
21.15.3.1.3.1 Variation 1: Use of Condensation Agents 343
21.15.3.1.3.2 Variation 2: By Reaction-Induced Crystallization 344
21.15.3.1.3.3 Variation 3: Melt or Solid-State Polymerization 345
21.15.3.1.4 Method 4: Transition-Metal-Catalyzed Polymerization 347
21.15.3.1.5 Method 5: Condensative Chain-Growth Polymerization 348
21.15.3.1.5.1 Variation 1: Aromatic Polyamides with Low Polydispersity 348
21.15.3.1.5.2 Variation 2: Block Copolyamides 349
21.15.3.1.6 Method 6: Hyperbranched Polymers Using ABx Monomers 352
21.15.3.1.7 Method 7: Dendrimers by Divergent and Convergent Methods 353
Volume 27: Heteroatom Analogues of Aldehydes and Ketones 360
27.13 Product Class 13: Nitrones and Cyclic Analogues 360
27.13.3 Nitrones and Cyclic Analogues 360
27.13.3.1 Synthesis of Nitrones and Cyclic Analogues 360
27.13.3.1.1 Method 1: Synthesis by Oxidation 360
27.13.3.1.1.1 Variation 1: Of Secondary Amines 360
27.13.3.1.1.2 Variation 2: Of Imines 368
27.13.3.1.1.3 Variation 3: Of Hydroxylamines 371
27.13.3.1.2 Method 2: Synthesis by Condensation of N-Alkylhydroxylamines 375
27.13.3.1.2.1 Variation 1: With Aldehydes 375
27.13.3.1.2.2 Variation 2: With Ketones 380
27.13.3.1.3 Method 3: Synthesis by N-Alkylation of Oximes 382
27.13.3.1.4 Method 4: Synthesis by Ring-Closure Reactions 383
27.13.3.1.5 Method 5: Miscellaneous Methods 389
27.13.3.2 Applications of Nitrones and Cyclic Analogues in Organic Synthesis 395
27.13.3.2.1 Method 1: 1,3-Dipolar Cycloadditions 395
27.13.3.2.1.1 Variation 1: With Heteroaromatic Multiple Bonds 395
27.13.3.2.1.2 Variation 2: With Alkynes 398
27.13.3.2.1.3 Variation 3: With Cumulenes 402
27.13.3.2.1.4 Variation 4: With Heterocumulenes 404
27.13.3.2.1.5 Variation 5: With Alkenes 405
27.13.3.2.1.6 Variation 6: Intramolecular Cyclizations 412
27.13.3.2.1.7 Variation 7: Enantioselective Catalysis 414
27.13.3.2.2 Method 2: Nucleophilic Additions 418
27.13.3.2.2.1 Variation 1: Of sp-Nucleophiles 418
27.13.3.2.2.2 Variation 2: Of sp2-Nucleophiles 419
27.13.3.2.2.3 Variation 3: Of sp3-Nucleophiles 421
27.13.3.2.2.4 Variation 4: Of Enolates 422
27.13.3.2.2.5 Variation 5: Allylation 423
27.13.3.2.2.6 Variation 6: Reduction (Deoxygenation) 424
27.13.3.2.2.7 Variation 7: Of P-Nucleophiles 425
27.13.3.2.3 Method 3: Metal Complex Formation 425
27.13.3.2.4 Method 4: Rearrangements 426
27.13.3.2.5 Method 5: Spin-Trapping 427
27.13.3.2.6 Method 6: Miscellaneous Reactions 428
Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines 440
40.1 Product Class 1: Amino Compounds 440
40.1.1.1.2 Reductive Amination of Carbonyl Compounds 440
40.1.1.1.2.1 Alkylamines from Carbonyl Compounds by Direct Reductive Amination 441
40.1.1.1.2.1.1 Method 1: Direct Reductive Amination by Catalytic Hydrogenation 441
40.1.1.1.2.1.1.1 Variation 1: Hydrogenation Using Heterogeneous Metal Catalysts 442
40.1.1.1.2.1.1.2 Variation 2: Hydrogenation Using Homogeneous Metal Complex Catalysts 442
40.1.1.1.2.1.1.3 Variation 3: Palladium-Catalyzed Transfer Hydrogenation 444
40.1.1.1.2.1.2 Method 2: Direct Reductive Amination Using Silanes as a Hydrogen Source 445
40.1.1.1.2.1.2.1 Variation 1: Using Polymethylhydrosiloxane 445
40.1.1.1.2.1.2.2 Variation 2: Using Aminohydrosilanes 446
40.1.1.1.2.1.2.3 Variation 3: Using Triethylsilane 446
40.1.1.1.2.1.2.4 Variation 4: Using Phenylsilane 447
40.1.1.1.2.1.3 Method 3: Direct Reductive Amination with Borohydride or Borane Reducing Agents 447
40.1.1.1.2.1.3.1 Variation 1: Using Sodium Cyanoborohydride 447
40.1.1.1.2.1.3.2 Variation 2: Using Sodium Borohydride 450
40.1.1.1.2.1.3.3 Variation 3: Using Zirconium(II) or Copper(I) Borohydrides 452
40.1.1.1.2.1.3.4 Variation 4: Using Sodium Triacyloxyborohydrides 453
40.1.1.1.2.1.3.5 Variation 5: Using Aminoboranes 454
40.1.1.1.2.1.3.6 Variation 6: One-Pot Direct Reductive Amination via Borane Reduction of Imines 455
40.1.1.1.2.2 Primary Alkylamines from Oximes and O-Alkyloximes 456
40.1.1.1.2.2.1 Primary Alkylamines from Oximes 457
40.1.1.1.2.2.1.1 Method 1: Catalytic Hydrogenation 457
40.1.1.1.2.2.1.2 Method 2: Catalytic Transfer Hydrogenation 458
40.1.1.1.2.2.1.3 Method 3: Reduction with Metallic Zinc 459
40.1.1.1.2.2.1.3.1 Variation 1: Using Zinc in the Presence of Ammonia 459
40.1.1.1.2.2.1.3.2 Variation 2: Using Zinc in the Presence of a Carboxylic Acid 460
40.1.1.1.2.2.1.4 Method 4: Reductions with Borane or Borohydrides 461
40.1.1.1.2.2.1.4.1 Variation 1: Reduction with Borane 461
40.1.1.1.2.2.1.4.2 Variation 2: Reduction with Borohydrides 461
40.1.1.1.2.2.1.5 Method 5: Reductions with Aluminum Trihydride or Hydroaluminates 463
40.1.1.1.2.2.2 Primary Alkylamines from O-Alkyloximes 463
40.1.1.1.2.3 Secondary Alkylamines from N-Alkylidenealkylamines by Reduction 465
40.1.1.1.2.3.1 Method 1: Stereorandom Reduction of N-Alkylidenealkylamines to Secondary Alkylamines 465
40.1.1.1.2.3.1.1 Variation 1: Via Hetereogenous Hydrogenation 465
40.1.1.1.2.3.1.2 Variation 2: Via Lewis Acid Catalyzed Hydrogenation 466
40.1.1.1.2.3.1.3 Variation 3: Via Transfer Hydrogenation 466
40.1.1.1.2.3.1.4 Variation 4: By Reduction with Hydrides 467
40.1.1.1.2.3.2 Method 2: Enantioselective Reduction of N-Alkylidenealkylamines to Secondary Alkylamines 469
40.1.1.1.2.4 Tertiary Alkylamines from Enamines by Reduction 470
40.1.1.1.2.4.1 Method 1: Amines from Enamines by Catalytic Hydrogenation 470
40.1.1.1.2.4.2 Method 2: Amines from Enamines by Enantioselective (Asymmetric) Catalytic Hydrogenation 472
40.1.1.1.2.4.3 Method 3: Amines from Enamines Using Other Reducing Agents 473
Author Index 478
Abbreviations 504
List of All Volumes 510
Abstracts
2.4.12 Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten
M. Uemura
This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (η6-Arene)chromium complexes have been considerably developed in organic synthesis on the basis of the strong electron-withdrawing ability and steric effect of the tricarbonylchromium fragment. The corresponding arenechromium complexes of unsymmetrical 1,2- or 1,3-disubstituted arene ligands are nonsuperimposable on their mirror images. Catalytic asymmetric synthesis of the planar chiral arenechromium complexes with chiral catalysts has been actively developed. The planar chiral arenetricarbonylchromium complexes have been widely employed in asymmetric synthesis, natural product synthesis, and increasingly as chiral ligands in asymmetric catalysis. This review focuses on the synthesis of planar chiral arenechromium complexes, and their applications in organic synthesis.
Keywords: asymmetric hydroboration · asymmetric reduction of ketones · atropisomer · catalytic asymmetric synthesis · chromium migration · cross coupling · cycloisomerization · enantioselective lithiation · gold catalysts · higher-order cycloaddition · nucleophilic substitution · molecular switch · axially chiral biaryl · palladium catalyst · planar chirality · radical coupling
4.4.26.7 1-Diazo-1-silylalkanes
Y. Hari, T. Aoyama, and T. Shioiri
This manuscript is an update to Section 4.4.26 describing methods for the synthesis and applications of 1-diazo-1-silylalkanes. This update focuses on papers published in the period 1999–2010.
Keywords: silyldiazoalkanes · diazo(trimethylsilyl)methane · alkylidene carbenes · Colvin rearrangement · insertion reaction · cyclopropanation · [3 + 2] cycloaddition · diazo(silyl)acetates · diazo(silyl)methyl ketones
7.1.2.44 Aluminum Hydrides
H. Naka and S. Saito
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of aluminum hydrides used for organic synthesis, and recent advances in synthetic applications of aluminum hydrides. Various chemoselective reductions, such as partial reduction of esters, nitriles, or amides to aldehydes, are possible using aluminum hydrides with suitable ligands.
Keywords: aluminum compounds · chemoselectivity · hydroalumination · metal hydrides · reduction · reductive cyclization · regioselectivity · stereoselective synthesis
7.1.3.18 Aluminum Halides
H. Naka and S. Saito
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of aluminum halides used for organic synthesis, along with recent synthetic applications of aluminum halides.
Keywords: acid catalysts · aluminum compounds · bromides · chiral compounds · chlorides · halides · iodides · ionic liquids · Lewis acid catalysts · salen complexes
7.1.9.11 Triorganoaluminum Compounds
M. Oishi and H. Takikawa
This manuscript is an update to the earlier Science of Synthesis contribution describing applications of triorganoaluminums and related compounds. It focuses on selective carboalumination, catalytic enantioselective conjugate additions, and carbonyl additions covered in the literature over the period 2004–2010. In addition, activations of C—F and C—H bonds are of increasing importance in organoaluminum chemistry.
Keywords: carboalumination · carbonyl additions · conjugate addition reactions · coupling reactions · regioselectivity · enantioselectivity · C—H bond activation · C—F bond activation
7.2.8 Gallium Compounds
M. Yamaguchi
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of organogallium compounds as well as their application in organic synthesis. It focuses on the literature published in the period 2002–2010.
Keywords: catalysis · complexation · gallium compounds · Lewis acid catalysts · metal alkyl complexes · organometallic reagents · oxidative addition
7.3 Product Class 3: Indium Compounds
S. Araki and T. Hirashita
This manuscript is a revision update to the earlier Science of Synthesis contribution describing methods for the synthesis of indium compounds. More recent developments in this area, in particular chemical transformations using indium reagents, have been reviewed.
Keywords: allylic compounds · allenic compounds · allylation · Barbier reaction · carbon—metal bonds · carbon–carbon coupling reactions · indium compounds · Lewis acid catalysts · transmetalation
7.9.5 Barium Compounds
A. Yanagisawa
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the application of barium compounds in organic synthesis. It focuses on the literature published in the decade up to 2010.
Keywords: aldol reaction · β-amino carbonyl compounds · asymmetric catalysis · barium compounds · conjugate addition · cross-coupling reactions · Diels–Alder reaction · 1,5-diketones · homocoupling · β-hydroxy carbonyl compounds · Mannich-type reaction · propargylic compounds
8.1.28 The Catalytic Use of Lithium Compounds for Bond Formation
S. Matsunaga
The catalytic use of lithium compounds as Lewis bases and Brønsted bases is introduced. Several C—C bond-forming (enantioselective) transformations, such as aldol reactions, Mannich reactions, cyanation, conjugate additions, sulfur ylide additions for oxirane and oxetane synthesis, and others, are described.
Keywords: asymmetric aldol reaction · asymmetric Mannich reaction · asymmetric cyanation · lithium compounds · Lewis base catalysts · asymmetric conjugate addition reactions · asymmetric Michael reaction · sulfur ylides · oxetane · oxiranes · Brønsted base catalysts
8.2.16 The Catalytic Use of Sodium Compounds for Bond Formation
T. Arai
Safe and inexpensive sodium reagents are promoted as versatile Lewis base, Lewis acid, and combination acid–base catalysts in green chemistry. Sodium-containing heterobimetallic asymmetric complexes enable highly stereoselective catalysis of transformations such as Michael reactions, cyclopropanation, and the Henry reaction.
Keywords: sodium compounds · catalysis · asymmetric synthesis · Mukaiyama reaction · Michael reaction
16.8.5 Pyridazines
J. Zhang
This manuscript is an update of the original Science of Synthesis chapter and includes methods for the preparation of pyridazines and pyridazinones described in the literature up to 2010. Methods proceeding by condensation of diketones, keto acids, or keto esters with hydrazine, and Diels–Alder reaction of 1,2,4,5-tetrazines and ketones are covered, as well as the application of halopyridazines in palladium-catalyzed cross-coupling reactions.
Keywords: pyridazines · ring closure · condensation reactions · dicarbonyl compounds · Diels–Alder reaction · cross-coupling reactions
20.2.1.8.13 Synthesis with Retention of the Functional Group (Update 1)
G. Landelle and J.-F. Paquin
This manuscript is an update to the earlier Science of Synthesis contribution, and specifically describes methods involving conjugate addition to α,β-unsaturated carboxylic acids. It focuses on the literature published in the period 1982–2009.
Keywords: conjugate addition · carboxylic acids · unsaturated compounds · organometallic reagents · stereoselectivity · regioselectivity
20.2.1.8.14 Synthesis with Retention of the Functional Group (Update 2)
J. L. Gleason and E. A. Tiong
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of carboxylic acids. It focuses on direct α-alkylations of carboxylic acids and diastereoselective α-alkylation of carboxylic acid derivatives used in carboxylic acid synthesis.
Keywords: alkylation · carboxylic acid · chiral auxiliary · enolates · alkyl halides · tertiary stereocenters · quaternary stereocenters
21.15 Product Class 15: Polyamides
T. Higashihara and M. Ueda
This manuscript describes methods for the...
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | Alkenylindium • alkenyl indium complexes • Alkenylindium Complexes • Alkyl Complexes • Allenylic Indium Complexes • Allylic Indium Complexes • Aluminum Hydrides • Amino Compounds • Arene Organometallic Complexes • arene organometallic compounds • Arylindium • Barium Compounds • Bond Formation • Bromide • carboxylic acid • carboxylic acids • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • chromium • compound functional group • compound organic synthesis • Functional Group • functional groups • Gallium • Gallium Compounds • halides • Indium • Indium Chloride • Indium Compounds • Indium Enolates • Iodide • Lithium Compounds • methods in organic synthesis • methods peptide synthesis • Molybdenum • Nitrones • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic compound • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Polyamides • Practical • practical organic chemistry • Propargylic Complexes • Pyridazines • Reaction • reference work • review organic synthesis • review synthetic methods • Sodium Compounds • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • Tetraorganoindates • Triorganoaluminum Compounds • Zerovalent Indium |
ISBN-10 | 3-13-178691-4 / 3131786914 |
ISBN-13 | 978-3-13-178691-3 / 9783131786913 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich