Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Cross Coupling and Heck-Type Reactions Vol. 1 (eBook)

C-C Cross Coupling Using Organometallic Partners

Gary A. Molander (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
1052 Seiten
Thieme (Verlag)
978-3-13-179051-4 (ISBN)

Lese- und Medienproben

Science of Synthesis: Cross Coupling and Heck-Type Reactions Vol. 1 -
Systemvoraussetzungen
Systemvoraussetzungen
259,99 inkl. MwSt
(CHF 249,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<p> In <em>Science of Synthesis: Cross Coupling and Heck-Type Reactions</em>, expert authors present and discuss the best and most reliable methods currently available for the formation of new carbon-carbon and carbon-heteroatom bonds using these reactions, highlighted with representative experimental procedures. Together, the three volumes of <em>Cross Coupling and Heck-Type Reactions</em> provide an extensive overview of the current state of the art in this field of central importance in modern chemistry, and are an invaluable resource for the practicing synthetic organic chemist. </p><p> This volume covers carbon-carbon bond formation, and, as a widely acknowledged recognition of the importance of the transformations described herein, virtually all of the chemistry described in this volume has achieved 'Name Reaction' stature, and the chapters are organized accordingly. Thus, Suzuki-Miyaura reactions, Hiyama cross coupling, Stille coupling, Negishi coupling, and finally Kumada coupling are discussed in sequence, with a particular emphasis on breadth of scope rather than detailed minutiae. </p><p></p><p> This volume is part of a 3-volume set: </p><p><a href='http://www.thieme.com/index.php?page=shop.product_details&amp;flypage=flypage.tpl&amp;product_id=1498&amp;category_id=11&amp;keyword=cross+Coupling&amp;option=com_virtuemart&amp;Itemid=53'>Cross Coupling and Heck-Type Reactions Workbench Edition</a></p><p><a href='http://www.thieme-chemistry.com/en/products/reference-works/science-of-synthesis.html'>General information about Science of Synthesis</a></p>

Science of Synthesis: Cross Coupling and Heck-Type Reactions 1 – C—C Cross Coupling Using Organometallic Partners 1
Title page 3
Imprint 5
Preface 6
Volume Editor's Preface 8
Cross Coupling and Heck-Type Reactions Volumes 10
Abstracts 12
Overview 22
Table of Contents 24
Introduction 46
1.1 Boron 54
1.1.1 Arylboron Cross-Coupling Reactions 54
1.1.1.1 Arylboronic Acid Cross-Coupling Reactions 54
1.1.1.1.1 Traditional Cross-Coupling Reactions 54
1.1.1.1.1.1 With C(sp2)--X Electrophiles (X = Leaving Group) 55
1.1.1.1.1.1.1 Aryl, Hetaryl, and Vinyl Halide Electrophiles 55
1.1.1.1.1.1.1.1 Aryl/Hetaryl Bromide and Iodide Electrophiles 55
1.1.1.1.1.1.1.1.1 “Ligandless” (Phosphine- and Carbene-Free) Catalyst Systems 55
1.1.1.1.1.1.1.1.2 Palladium/Amine Catalyst Systems 61
1.1.1.1.1.1.1.2 Aryl, Hetaryl, and Vinyl Chloride Electrophiles 67
1.1.1.1.1.1.1.3 Aryl/Hetaryl Fluoride Electrophiles 95
1.1.1.1.1.1.2 Aryl--, Hetaryl--, and Vinyl--Oxygen Electrophiles 100
1.1.1.1.1.1.2.1 Aryl Trifluoromethanesulfonate/Nonafluorobutanesulfonate Electrophiles 100
1.1.1.1.1.1.2.2 Hetaryl Trifluoromethanesulfonate/Nonafluorobutanesulfonate Electrophiles 105
1.1.1.1.1.1.2.3 Vinyl Trifluoromethanesulfonate Electrophiles 107
1.1.1.1.1.1.2.4 Arenesulfonate Electrophiles 113
1.1.1.1.1.1.2.5 Vinyl 4-Toluenesulfonate Electrophiles 118
1.1.1.1.1.1.2.6 Methanesulfonate Electrophiles 123
1.1.1.1.1.1.2.7 Other Sulfonic Acid Based Electrophiles 126
1.1.1.1.1.1.2.8 Ester Electrophiles 130
1.1.1.1.1.1.2.9 Carbamate and Carbonate Electrophiles 133
1.1.1.1.1.1.2.10 Phenol Electrophiles via Phosphonium Activation 133
1.1.1.1.1.1.2.11 Aryl Phosphate Electrophiles 139
1.1.1.1.1.1.2.12 Enol Phosphate Electrophiles 140
1.1.1.1.1.1.3 Aryl-- and Hetaryl--Nitrogen Electrophiles 146
1.1.1.1.1.1.3.1 Diazonium Electrophiles 147
1.1.1.1.1.1.3.1.1 In Situ Generated Diazonium Electrophiles 150
1.1.1.1.1.1.3.2 Triazene Electrophiles 152
1.1.1.1.1.1.3.3 Ammonium Electrophiles 153
1.1.1.1.1.1.3.4 Azole Electrophiles 154
1.1.1.1.1.1.4 Aryl-- and Hetaryl--Sulfur Electrophiles 155
1.1.1.1.1.1.4.1 Arenesulfonyl Chloride Electrophiles 156
1.1.1.1.1.1.4.2 p-Deficient Heteroaromatic Thioether Electrophiles 156
1.1.1.1.1.1.5 Carboxylic Acid Derivative Electrophiles 158
1.1.1.1.1.1.5.1 Carboxylic Acid Chloride Electrophiles 158
1.1.1.1.1.1.5.2 Carboxylic Acid Thioester Electrophiles 159
1.1.1.1.1.1.5.3 Carboxylic Acid Ester and Anhydride Electrophiles 160
1.1.1.1.1.2 C(sp3)--X Electrophiles (X = Leaving Group) 164
1.1.1.1.1.2.1 Unactivated C(sp3)--X Electrophiles with ß-Hydrogen Atoms 164
1.1.1.1.1.2.2 Activated C(sp3)--X Electrophiles without ß-Hydrogen Atoms 169
1.1.1.1.1.2.2.1 Benzylic--X Electrophiles 169
1.1.1.1.1.2.2.2 Allylic--X Electrophiles 172
1.1.1.1.1.2.2.3 a-X Ketones 174
1.1.1.1.1.3 C(sp)--X Electrophiles 175
1.1.1.1.1.3.1 Alkynyl Halide Electrophiles 175
1.1.1.1.1.3.2 Alkynyl Sulfide Electrophiles 177
1.1.1.1.1.3.3 Benzyl Thiocyanate Electrophiles 177
1.1.1.1.2 Oxidative Cross-Coupling Reactions 178
1.1.1.1.2.1 Diazo Coupling Partners 178
1.1.1.1.2.1.1 a-Diazocarbonyl Compounds 179
1.1.1.1.2.1.2 N-Tosylhydrazones 181
1.1.1.1.2.2 Alkyne Coupling Partners 182
1.1.1.1.2.2.1 Terminal Alkynes 182
1.1.1.1.2.2.2 Alkynyl Carboxylic Acids 184
1.1.1.1.2.2.3 Alkynyl Sulfides 185
1.1.1.2 Arylboronic Acid Derivative Cross-Coupling Reactions 192
1.1.1.2.1 Arylboronic Acid Derivatives Used in Cross-Coupling Reactions 193
1.1.1.2.1.1 Pinacol Esters of Arylboronic Acids 193
1.1.1.2.1.1.1 Preparation of Pinacol Esters of Arylboronic Acids 193
1.1.1.2.1.1.2 Coupling with Aryl Bromides and Iodides 194
1.1.1.2.1.1.3 Coupling with Aryl Chlorides 198
1.1.1.2.1.1.4 Coupling with Aryl Trifluoromethanesulfonates 200
1.1.1.2.1.1.5 Coupling with Miscellaneous Aromatic Electrophiles 201
1.1.1.2.1.1.6 Coupling of Alkenyl Halides and Pseudohalides 202
1.1.1.2.1.1.7 Coupling with Alkyl Halides and Pseudohalides 204
1.1.1.2.1.1.8 One-Pot Coupling via Borylation of C--X and C--H Bonds 205
1.1.1.2.1.1.9 Coupling Using Diboryl- and Borylhalobenzene Derivatives for Cyclization and Polymerization 209
1.1.1.2.1.2 Other Cyclic Esters of Arylboronic Acids 213
1.1.1.2.1.3 Aryltrifluoroborates 216
1.1.1.2.1.4 Aryltriolborates 224
1.1.1.2.2 Cross-Coupling Sequences Involving Protected Arylboronic Acids 226
1.1.1.2.2.1 Naphthalene-1,8-diamine Derivatives 228
1.1.1.2.2.2 N-Methyliminodiacetic Acid Derivatives 237
1.1.1.2.2.3 Anthranilamide Derivatives 241
1.1.2 Hetarylboron Cross-Coupling Reactions 248
1.1.2.1 Five-Membered-Ring Hetarylboronic Acids and Derivatives 249
1.1.2.1.1 Nitrogen-Containing Five-Membered-Ring Hetarylboronic Acids and Derivatives 249
1.1.2.1.2 Oxygen-Containing Five-Membered-Ring Hetarylboronic Acids and Derivatives 255
1.1.2.1.3 Sulfur-Containing Five-Membered-Ring Hetarylboronic Acids and Derivatives 260
1.1.2.1.4 Mixed-Heteroatom-Containing Five-Membered-Ring Hetarylboronic Acids and Derivatives 266
1.1.2.2 Six-Membered-Ring Hetarylboronic Acids and Derivatives 268
1.1.2.2.1 2-Pyridylboronic Acids and Derivatives 268
1.1.2.2.2 3-Pyridylboronic Acids and Derivatives 273
1.1.2.2.3 4-Pyridylboronic Acids and Derivatives 278
1.1.2.2.4 Multiple-Nitrogen-Containing Six-Membered-Ring Hetarylboronic Acids and Derivatives 282
1.1.2.3 5-Ring--6-Ring Fused Hetarylboronic Acids and Derivatives 284
1.1.2.3.1 Nitrogen-Containing 5-Ring--6-Ring Fused Hetarylboronic Acids and Derivatives 284
1.1.2.3.2 Oxygen-Containing 5-Ring--6-Ring Fused Hetarylboronic Acids and Derivatives 295
1.1.2.3.3 Sulfur-Containing 5-Ring--6-Ring Fused Hetarylboronic Acids and Derivatives 298
1.1.2.4 6-Ring--6-Ring Fused Hetarylboronic Acids and Derivatives 300
1.1.2.5 Other Fused-Ring Hetarylboronic Acids and Derivatives 303
1.1.3 Alkenylboron Cross-Coupling Reactions 310
1.1.3.1 Alkenylboranes 312
1.1.3.1.1 Suzuki--Miyaura Coupling 312
1.1.3.1.1.1 Alkenyl Electrophiles 312
1.1.3.1.1.2 Alkynyl Electrophiles 314
1.1.3.2 Alkenylboronic Acids and Esters 315
1.1.3.2.1 Suzuki--Miyaura Coupling 316
1.1.3.2.1.1 Alkyl Electrophiles 316
1.1.3.2.1.2 Alkenyl Electrophiles 317
1.1.3.2.1.3 Aryl Electrophiles 321
1.1.3.2.1.4 Hetaryl and Other Heterocyclic Electrophiles 325
1.1.3.2.1.5 Alkynyl Electrophiles 329
1.1.3.2.2 Carbonylative Cross Coupling 329
1.1.3.2.2.1 Alkenyl Electrophiles 329
1.1.3.2.2.2 Aryl Electrophiles 332
1.1.3.2.3 Acylation Reaction 333
1.1.3.2.3.1 Acyl Halides and Anhydrides 333
1.1.3.2.3.2 Thiol Esters 335
1.1.3.2.3.3 Carbamoyl Chlorides 337
1.1.3.2.4 Desulfinative and Desulfonylative Coupling 338
1.1.3.3 Alkenyltrifluoroborates 340
1.1.3.3.1 Suzuki--Miyaura Coupling 341
1.1.3.3.1.1 Allyl and Benzyl Electrophiles 341
1.1.3.3.1.2 Aryl Electrophiles 343
1.1.3.3.1.3 Hetaryl Electrophiles 346
1.1.3.3.1.4 Alkenyl Electrophiles 347
1.1.3.3.2 Carbonylative Cross Coupling 351
1.1.3.3.3 Acylation Reaction 352
1.1.3.3.3.1 Aryl Halides 352
1.1.3.3.3.2 Carbamoyl Chlorides 353
1.1.3.3.4 Desulfinative Coupling 353
1.1.3.4 Other Boron Derivatives 354
1.1.3.4.1 Suzuki--Miyaura Coupling 354
1.1.3.4.1.1 Allyl and Benzyl Electrophiles 354
1.1.3.4.1.2 Aryl Electrophiles 355
1.1.3.4.1.3 Hetaryl Electrophiles 358
1.1.3.4.1.4 Alkenyl Electrophiles 358
1.1.3.4.2 Carbonylative Cross Coupling 361
1.1.4 Alkylboron Cross-Coupling Reactions 368
1.1.4.1 The B-Alkyl Suzuki--Miyaura Reaction 368
1.1.4.1.1 Classes of Alkylboron Reagents 368
1.1.4.1.1.1 Trialkylboranes 368
1.1.4.1.1.2 Alkylboronic Acids and Alkylboronate Esters 369
1.1.4.1.1.3 Alkyltrifluoroborates and N-Methyliminodiacetic Acid (MIDA) Boronates 369
1.1.4.1.2 General Mechanistic Considerations 369
1.1.4.1.2.1 Oxidative Addition 369
1.1.4.1.2.2 Transmetalation 369
1.1.4.1.2.3 Reductive Elimination 370
1.1.4.2 Cross Coupling of Primary Alkylboron Derivatives 370
1.1.4.2.1 Cross Coupling of Trialkylboranes 370
1.1.4.2.1.1 With Aryl Electrophiles 371
1.1.4.2.1.2 With (Haloaryl)trifluoroborates 372
1.1.4.2.1.3 With Alkenyl Electrophiles 373
1.1.4.2.1.4 With Alkyl Electrophiles 373
1.1.4.2.2 Cross Coupling of Alkylboronic Acids or Alkylboronate Esters 374
1.1.4.2.2.1 Of Alkylboronic Acids with Aryl Electrophiles 374
1.1.4.2.2.2 Of Alkylboronic Acids with Alkenyl Electrophiles 375
1.1.4.2.2.3 Of Alkylboronate Esters with Aryl Electrophiles 376
1.1.4.2.3 Cross Coupling of Alkyltrifluoroborates 377
1.1.4.2.3.1 Of Primary Alkyltrifluoroborates with Aryl Electrophiles 377
1.1.4.2.3.2 Of Primary Alkyltrifluoroborates with Alkenyl Electrophiles 378
1.1.4.2.3.3 Of Functionalized Primary Alkyltrifluoroborates 379
1.1.4.2.3.3.1 (2-Aminoethyl)trifluoroborates 379
1.1.4.2.3.3.2 (Ammoniomethyl)- and (Aminomethyl)trifluoroborates 380
1.1.4.2.3.3.3 (Alkoxymethyl)trifluoroborates 386
1.1.4.2.3.3.4 (3-Oxoalkyl)trifluoroborates 388
1.1.4.2.4 Carbonylative Cross-Coupling Reactions 391
1.1.4.2.5 Intramolecular Cross-Coupling Reactions 392
1.1.4.2.6 Palladium-Catalyzed Coupling with Thioesters 393
1.1.4.3 Cross Coupling of Secondary Alkylboron Derivatives 394
1.1.4.3.1 Cyclopropylboron Derivatives 394
1.1.4.3.2 Benzylic Alkylboron Reagents 396
1.1.4.3.3 Non-benzylic Alkylboron Reagents 396
1.1.4.4 Cross Coupling of Diborylalkane Species 399
1.1.4.5 Conclusions 401
1.1.5 Alkynyl- and Allylboron Cross-Coupling Reactions 404
1.1.5.1 Alkynylboron Cross-Coupling Reactions 404
1.1.5.1.1 Cross-Coupling Reactions of Potassium Alkynyltrifluoroborates 404
1.1.5.1.1.1 With Aryl and Hetaryl Halides or Aryl Trifluoromethanesulfonates 404
1.1.5.1.1.2 With Alkenyl Halides 407
1.1.5.1.1.3 With Cyclic a-Iodoenones 408
1.1.5.1.1.4 With 4-Bromofuran-2(5H)-one or 4-Bromo-1-benzopyran-2-one 408
1.1.5.1.2 Cross-Coupling Reactions of Alkynylborates 409
1.1.5.1.2.1 With Aryl, Hetaryl, or Alkenyl Halides Mediated by Palladium 409
1.1.5.1.2.2 With Aryl Chlorides Mediated by Palladium 411
1.1.5.1.2.3 With Allylic Bromides Mediated by Palladium 412
1.1.5.1.2.4 With Aryl Iodides Mediated by Platinum/Copper(I) Iodide 413
1.1.5.1.2.5 With 1,3-Disubstituted Allyl Carbonates Mediated by Nickel 415
1.1.5.1.2.6 With Acid Chlorides Mediated by Copper(I) Chloride 416
1.1.5.1.3 Cross-Coupling Reactions of Ethynyl N-Methyliminodiacetic Acid (MIDA) Boronates 417
1.1.5.1.4 Cross Coupling of 9-Alkynyl-9-borabicyclo[3.3.1]nonane “Ate” Complexes 418
1.1.5.1.4.1 With Aryl Halides Mediated by Palladium 418
1.1.5.2 Allylboron Cross-Coupling Reactions 420
1.1.5.2.1 Cross-Coupling Reactions of Potassium Allyltrifluoroborates 420
1.1.5.2.1.1 With Aryl Halides Mediated by Palladium 420
1.1.5.2.1.2 With Alkenyl Halides Mediated by Palladium 422
1.1.5.2.2 Cross-Coupling Reactions of Allylboronates 423
1.1.5.2.2.1 With Aryl Halides Mediated by Palladium 423
1.1.5.2.2.2 With Hetaryl Halides Mediated by Palladium 425
1.1.5.2.3 Cross-Coupling Reactions of 9-Allyl-9-borabicyclo[3.3.1]nonane “Ate” Complexes 425
1.1.5.2.3.1 With Aryl Halides Mediated by Palladium 425
1.1.5.2.3.2 With Hetaryl Halides Mediated by Palladium 426
1.2 Silicon 428
1.2.1 Arylsilicon Cross-Coupling Reactions 428
1.2.1.1 Mechanism 429
1.2.1.2 Stereochemistry 431
1.2.1.3 Scope and Limitations 431
1.2.1.3.1 Triorganosilanes 431
1.2.1.3.1.1 Trimethyl- and tert-Butyldimethylsilanes 431
1.2.1.3.1.2 [2-(Hydroxymethyl)phenyl]dimethylsilanes 432
1.2.1.3.1.3 Triallylsilanes 437
1.2.1.3.1.4 Diallyldiaryl- and Allyltriarylsilanes 439
1.2.1.3.2 Halosilanes 440
1.2.1.3.2.1 Monochlorosilanes 441
1.2.1.3.2.2 Difluorosilanes 441
1.2.1.3.2.3 Dichlorosilanes 444
1.2.1.3.2.4 Trifluorosilanes 444
1.2.1.3.2.5 Coupling with Alkyl Halides 445
1.2.1.3.3 Silanols 447
1.2.1.3.4 Silanediols and -triols 449
1.2.1.3.5 Silanolates 450
1.2.1.3.6 Alkoxysilanes 452
1.2.1.3.6.1 Dialkoxysilanes 452
1.2.1.3.6.2 Trialkoxysilanes 452
1.2.1.3.6.2.1 Fluoride Activation 452
1.2.1.3.6.2.1.1 Coupling with Aryl Halides 452
1.2.1.3.6.2.1.2 Coupling with Aryl Sulfonates 459
1.2.1.3.6.2.1.3 Coupling with Alkenyl Electrophiles 460
1.2.1.3.6.2.1.4 Coupling with Allylic Carboxylates 461
1.2.1.3.6.2.1.5 Coupling with Benzyl Halides 462
1.2.1.3.6.2.1.6 Coupling with Alkyl Halides 463
1.2.1.3.6.2.2 Brønsted Base Activation 464
1.2.1.3.6.3 Silatranes 467
1.2.1.3.7 Siloxanes 468
1.2.1.3.7.1 Disiloxanes 468
1.2.1.3.7.2 Polysiloxanes 468
1.2.1.3.8 Silicates 469
1.2.1.3.8.1 Difluorosilicates 469
1.2.1.3.8.2 Catecholsilicates 470
1.2.1.4 Conclusions 471
1.2.2 Hetarylsilicon Cross-Coupling Reactions 476
1.2.2.1 Scope and Limitations 476
1.2.2.1.1 Triorganosilanes 476
1.2.2.1.1.1 Trimethylsilanes 476
1.2.2.1.1.2 Allyldimethylsilanes 477
1.2.2.1.1.3 [2-(Hydroxymethyl)phenyl]dimethylsilanes 478
1.2.2.1.2 Silanols 479
1.2.2.1.3 Silanolates 484
1.2.2.2 Conclusions 486
1.2.3 Alkenylsilicon Cross-Coupling Reactions 488
1.2.3.1 Mechanism 488
1.2.3.1.1 Fluoride Activation 488
1.2.3.1.1.1 Theoretical Studies 491
1.2.3.1.1.2 Influence of Heteroatom Substitution on the Silicon Atom 491
1.2.3.1.2 Brønsted Base Activation 492
1.2.3.2 Stereochemistry 494
1.2.3.2.1 Configurational Specificity 495
1.2.3.2.2 Constitutional Specificity 496
1.2.3.3 Scope and Limitations 500
1.2.3.3.1 Triorganosilanes 500
1.2.3.3.1.1 Trimethylsilanes 500
1.2.3.3.1.2 [2-(Hydroxymethyl)phenyl]dimethylsilanes 501
1.2.3.3.1.3 Silanol Surrogates 503
1.2.3.3.1.3.1 Methylsilacyclobutanes 503
1.2.3.3.1.3.2 Benzyldimethylsilanes 506
1.2.3.3.1.3.3 Dimethyl(2-thienyl)silanes 508
1.2.3.3.1.3.4 Dimethyl(2-pyridyl)silanes 509
1.2.3.3.1.3.5 Hydridosilanes 511
1.2.3.3.2 Halosilanes 511
1.2.3.3.2.1 Monofluorosilanes 511
1.2.3.3.2.2 Monochlorosilanes 512
1.2.3.3.2.3 Difluorosilanes 513
1.2.3.3.2.4 Dichlorosilanes 515
1.2.3.3.2.5 Trifluorosilanes 516
1.2.3.3.3 Silanols 516
1.2.3.3.3.1 Fluoride Activation 516
1.2.3.3.3.2 Brønsted Base Activation 519
1.2.3.3.4 Silanolates 520
1.2.3.3.5 Alkoxysilanes 521
1.2.3.3.5.1 Monoalkoxysilanes 522
1.2.3.3.5.1.1 Acyclic Silyl Ethers 522
1.2.3.3.5.1.2 Cyclic Silyl Ethers 523
1.2.3.3.5.1.2.1 Ring-Closing Metathesis/Intermolecular Cross Coupling 523
1.2.3.3.5.1.2.2 Ring-Closing Metathesis/Intramolecular Cross Coupling 524
1.2.3.3.5.1.2.3 Intramolecular Silylformylation/Intermolecular Cross Coupling 525
1.2.3.3.5.1.2.4 Intramolecular Hydrosilylation/Intermolecular Cross Coupling 526
1.2.3.3.5.1.2.5 Cross Coupling of a Bis(silyl)ethene 527
1.2.3.3.5.2 Dialkoxysilanes 528
1.2.3.3.5.3 Trialkoxysilanes 529
1.2.3.3.6 Siloxanes 530
1.2.3.3.6.1 Symmetrical Disiloxanes 530
1.2.3.3.6.2 Unsymmetrical Disiloxanes 533
1.2.3.3.6.3 Polysiloxanes 534
1.2.3.3.7 Silicates 535
1.2.3.3.7.1 Pentafluorosilicates 535
1.2.3.3.7.2 Catecholsilicates 536
1.2.3.4 Conclusions 536
1.2.4 Alkylsilicon Cross-Coupling Reactions 540
1.2.4.1 Stereochemistry 540
1.2.4.1.1 Constitutional Site Selectivity 540
1.2.4.1.1.1 Effects of Ligand 540
1.2.4.1.1.2 Effects of Double-Bond Geometry 541
1.2.4.1.1.3 Effects of Nontransferable Substituent 542
1.2.4.1.2 Stereospecificity 543
1.2.4.1.2.1 Allylsilanes 543
1.2.4.1.2.2 Benzylsilanes 545
1.2.4.2 Scope and Limitations 546
1.2.4.2.1 Cross Coupling of Allylsilanes 546
1.2.4.2.1.1 Trifluorosilanes 547
1.2.4.2.1.2 Silanolates 548
1.2.4.2.2 Cross Coupling of Alkylsilanes 550
1.2.4.2.2.1 Trifluorosilanes 551
1.2.4.2.2.2 Dialkoxysilanols 551
1.2.4.2.2.3 2-(2-Hydroxypropan-2-yl)phenylsilanes 552
1.2.4.3 Conclusions 553
1.2.5 Alkynyl- and Acylsilicon Cross-Coupling Reactions 556
1.2.5.1 Palladium-Catalyzed Cross Coupling of Alkynylsilicon Derivatives 556
1.2.5.1.1 In the Presence of Fluoride Anions 556
1.2.5.1.1.1 Silver-Free Procedures 556
1.2.5.1.1.1.1 Cross Coupling of Alkynylsilanes with Organic Halides and Trifluoromethanesulfonates 556
1.2.5.1.1.1.2 Cross Coupling of Alkynylsilanols with Aryl Iodides 557
1.2.5.1.1.2 Silver-Catalyzed Procedures 558
1.2.5.1.2 Fluoride-Free Procedures 559
1.2.5.1.2.1 Silver-Free Procedures 559
1.2.5.1.2.2 Silver-Catalyzed Procedures 561
1.2.5.1.3 Copper-Catalyzed Procedures 562
1.2.5.1.3.1 Cross Coupling of Alkynylsilanes with Aryl Halides and Trifluoromethanesulfonates 562
1.2.5.1.3.2 Cross Coupling of Alkynylsilanols with Aryl Iodides 564
1.2.5.2 Palladium-Free Cross Coupling of Alkynylsilicon Derivatives 565
1.2.5.2.1 Copper-Catalyzed Procedures 565
1.2.5.2.1.1 In the Presence of Fluoride Anions 565
1.2.5.2.1.2 Fluoride-Free Procedures 566
1.2.5.3 Acylsilane Cross Coupling 568
1.3 Tin 572
1.3.1 Organotin Cross-Coupling Reactions 572
1.3.1.1 Mechanisms of the Stille Reaction 573
1.3.1.2 Cross Coupling of Aryl and Hetaryl Electrophiles with Stannanes 576
1.3.1.2.1 Synergistic Effect of Copper(I) Salts and Fluoride Ions 576
1.3.1.2.2 Coupling of Aryl and Hetaryl Bromides and Iodides 578
1.3.1.2.2.1 Use of Heterogeneous Catalysts 580
1.3.1.2.2.2 Coupling of Aryl Halides Using Palladium(II) Acetate/1,4-Diazabicyclo[2.2.2]octane 581
1.3.1.2.2.3 Coupling of Aryl Halides Using Bis(dibenzylideneacetone)palladium(0)/N,N'-Dicyclohexylethane-1,2-diimine 583
1.3.1.2.2.4 Total Synthesis of Chloptosin 584
1.3.1.2.2.5 Synthesis of Kinesin Spindle Protein Inhibitors 585
1.3.1.2.3 Coupling of Aryl and Hetaryl Chlorides 585
1.3.1.2.3.1 Coupling Using a Palladium/XPhos Catalyst 586
1.3.1.2.3.2 Use of Palladium/XPhos Catalyst in the Synthesis of 4-Functionalized Indoles 587
1.3.1.2.3.3 Coupling Using a (ß-Oxoiminato)(phosphine)palladium Complex 587
1.3.1.2.3.4 Synthesis of Ajudazols 589
1.3.1.2.3.5 Synthesis of 6-Aryl-9-benzylpurines 589
1.3.1.2.3.6 Coupling of 4-(Arylsulfanyl)-3-chlorocyclobutene-1,2-diones 590
1.3.1.2.4 Coupling of Aryl and Hetaryl Sulfonates 591
1.3.1.2.4.1 Coupling of Aryl and Hetaryl Trifluoromethanesulfonates 591
1.3.1.2.4.2 Synthesis of Complex Pyridines 592
1.3.1.2.4.3 Total Synthesis of Nicandrenones 592
1.3.1.2.4.4 Total Synthesis of Leiodelides 593
1.3.1.2.5 Coupling of Aryl Fluorides 594
1.3.1.2.6 Coupling of Sulfonyl Chlorides 594
1.3.1.3 Cross Coupling of Alkenyl Electrophiles with Stannanes 594
1.3.1.3.1 Coupling of Alkenyl Halides 594
1.3.1.3.1.1 Coupling of Alkenyl Iodides with Di- and Trifunctional Organostannanes 594
1.3.1.3.1.2 Synthesis of (Z)-exo-Glycals 596
1.3.1.3.1.3 Synthesis of ( )-Arabilin 597
1.3.1.3.1.4 Synthesis of (±)-Galanthamine 598
1.3.1.3.1.5 Synthesis of Peridinin Analogues 599
1.3.1.3.1.6 Use of Hetero-bis-metallobuta-1,3-dienes in Orthogonal Stille and Suzuki--Miyaura Couplings 600
1.3.1.3.2 Coupling of Alkenyl Sulfonates 602
1.3.1.3.2.1 Coupling of Enol Trifluoromethanesulfonates and Enol Nonafluorobutanesulfonates 602
1.3.1.3.2.2 Synthesis of Peridinin and Its Derivatives 603
1.3.1.3.2.3 Synthesis of Cucurbitacins B and D 604
1.3.1.3.3 Coupling of Other Alkenyl Electrophiles 605
1.3.1.3.3.1 Use of Vinyl Phosphonates in the Synthesis of Zoanthamine 605
1.3.1.4 Cross Coupling of Acyl Electrophiles and Related Substrates with Stannanes 606
1.3.1.4.1 Synthesis of a-Arylsulfanyl Z-a,ß-Unsaturated Ketones 606
1.3.1.4.2 Synthesis of a-Arylsulfonyl Z-a,ß-Unsaturated Ketones 607
1.3.1.4.3 Stille Coupling of Fluorinated Vinylstannanes with Acid Chlorides 609
1.3.1.4.4 Stille Coupling in the Synthesis of 5- and 6-Acylindoles 609
1.3.1.4.5 Total Synthesis of Sequosempervirin A 611
1.3.1.4.6 Synthesis of .-Hydroxy a,ß-Unsaturated Aldehydic Esters of 2-Lysophosphatidylcholine 611
1.3.1.4.7 Synthesis of Cholesteryl Ester Transfer Protein (CETP) Inhibitors 612
1.3.1.4.8 Synthesis of Goniodomin A 612
1.3.1.5 Cross Coupling of Allylic and Propargylic Electrophiles with Stannanes 613
1.3.1.5.1 Application in the Synthesis of ( )-Zampanolide 614
1.3.1.5.2 Total Synthesis of ( )-Isodomoic Acid B 615
1.3.1.5.3 Coupling of Allylic and Propargylic Bromides with Fluorinated Stannanes 616
1.3.1.5.4 Synthesis of Penta-1,4-dienylgermanes and Penta-1,4-dienylsilanes 618
1.3.1.6 Cross Coupling of Alkyl Electrophiles with Stannanes 620
1.3.1.6.1 Coupling of Primary and Secondary Alkyl Halides 620
1.3.1.6.2 Coupling of Benzylic Electrophiles 624
1.3.1.6.2.1 Synthesis of Diarylmethanes 624
1.3.1.6.2.2 Formal Synthesis of Apicularen A 625
1.3.1.6.3 Coupling of Other Alkyl Electrophiles 626
1.3.1.6.3.1 Synthesis of Radionucleotides 626
1.3.1.6.3.2 Total Synthesis of Neopeltolide 626
1.3.1.6.3.3 Synthesis of (±)-5-epi-Hydroxycornexistin 627
1.3.1.6.3.4 Coupling of a-Bromocarbonyl Compounds 628
1.3.1.7 Carbonylative Cross Coupling with Stannanes 628
1.3.1.7.1 Carbonylative Coupling of Aryl and Hetaryl Electrophiles 628
1.3.1.7.1.1 Synthesis of Diaryl Ketones 628
1.3.1.7.1.2 Synthesis of Unsymmetrical Ketones Using a Supported Catalyst 630
1.3.1.7.1.3 Synthesis of 5-Acyl-4-fluoro-1H-pyrazoles 632
1.3.1.7.1.4 Synthesis of Inhibitors of Anandamide Cellular Uptake 633
1.3.1.7.2 Carbonylative Coupling of Alkenyl Electrophiles 634
1.3.1.7.2.1 Carbonylative Coupling of Enol Trifluoromethanesulfonates with Hindered Vinylstannanes 634
1.3.1.7.2.2 Synthesis of Nodulisporic Acids 635
1.3.1.7.2.3 Synthesis of Alk-1-enyl Vinyl Ketones 636
1.3.1.7.3 Carbonylative Coupling of Allylic, Propargylic, and Benzylic Electrophiles 637
1.3.1.7.3.1 Synthesis of 1,2-Diarylethanones 637
1.3.1.7.3.2 Synthesis of 2-Naphthols 638
1.3.1.8 Miscellaneous Applications of the Stille Coupling 639
1.3.1.8.1 Applications in Combinatorial Chemistry and Drug Discovery 640
1.3.1.8.1.1 Synthesis of Potential Cyclin-Dependent Kinase Inhibitors 640
1.3.1.8.1.2 Synthesis of Modified Pyrimidine and Purine Nucleosides 640
1.3.1.8.2 Construction of Polyaromatic Scaffolds 641
1.3.1.8.3 Industrial-Scale Applications 644
1.3.1.8.4 Application in Solid-Phase Synthesis 646
1.3.1.8.4.1 Supported Palladium Catalysts 646
1.3.1.8.4.2 Supported Organostannanes 647
1.3.1.8.5 Use of Ionic Liquids 647
1.3.1.8.5.1 Tin Reagent Supported on an Ionic Liquid 647
1.3.1.8.5.2 Ionic Liquid as Solvent 649
1.3.1.8.6 Photoaccelerated Stille Coupling Reaction 649
1.3.1.8.7 Stille Reactions in Other Media 650
1.3.1.8.7.1 In Supercritical Carbon Dioxide and Water 650
1.3.1.8.7.2 In Sugar--Urea--Salt Melts 651
1.3.1.8.8 Stille Couplings Catalytic in Tin 653
1.3.1.8.8.1 The Sn--O Approach 653
1.3.1.8.8.2 The Sn--F Approach 654
1.3.1.8.8.3 One-Pot Palladium-Catalyzed Hydrostannylation/Stille Reaction with Acid Chlorides as Electrophiles 656
1.4 Zinc 668
1.4.1 Arylzinc Cross-Coupling Reactions 668
1.4.1.1 Formation of Unsymmetrical Biaryls from Arylzinc Compounds 669
1.4.1.1.1 Palladium-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Aryl Halides 669
1.4.1.1.1.1 Palladium-Catalyzed Formation of Biaryls from Arylzinc Halides 669
1.4.1.1.1.1.1 Use of Phosphine Ligands 669
1.4.1.1.1.1.1.1 Cross Coupling with Aryl Bromides and Iodides 670
1.4.1.1.1.1.1.2 Cross Coupling with Aryl Chlorides 673
1.4.1.1.1.1.1.3 Cross Coupling with Aryl Halides Bearing an Acidic Proton 676
1.4.1.1.1.1.1.4 Cross Coupling with Enantiopure 2,2'-Diiodo-1,1'-binaphthyl 677
1.4.1.1.1.1.2 Use of PEPPSI-Type Palladium--Carbene Complexes 678
1.4.1.1.1.1.3 Use of Phosphinous Acid Ligands 681
1.4.1.1.1.1.4 Use of Ligand-Free Palladium as Catalyst 682
1.4.1.1.1.1.5 Negishi Cross Coupling of Organotellurium Compounds 684
1.4.1.1.1.2 Palladium-Catalyzed Formation of Biaryls from Diarylzinc Reagents 685
1.4.1.1.1.2.1 Use of Aminophosphine Ligands 685
1.4.1.1.1.2.2 Use of an Aliphatic, Phosphine-Based Pincer Complex of Palladium 686
1.4.1.1.1.2.3 Use of Bis(dibenzylideneacetone)palladium(0) Associated with RuPhos in the Presence of 2-Iodopropane 687
1.4.1.1.2 Nickel-Catalyzed Reactions 688
1.4.1.1.2.1 Use of Phosphine Ligands 688
1.4.1.1.2.2 Use of Diethyl Phosphite as Ligand 690
1.4.1.1.2.3 Use of Amido Pincer Ligands 691
1.4.1.1.2.4 Use of N-Heterocyclic Carbene Nickel Complexes 693
1.4.1.1.2.5 Nickel-Catalyzed Cross Coupling of Arylammonium Salts with Arylzinc Chlorides 696
1.4.1.1.2.6 Aminophosphine--Nickel Catalyzed Cross-Coupling Reactions of Diarylzinc Species with Aryl Bromides or Chlorides 697
1.4.1.1.3 Rhodium(I)-Catalyzed Reactions 698
1.4.1.2 Formation of Aryl--Hetaryl Bonds from Arylzinc Compounds 699
1.4.1.2.1 Palladium-Catalyzed Reactions 699
1.4.1.2.1.1 Use of Phosphorus-Containing Ligands 699
1.4.1.2.1.1.1 Coupling with Hetaryl Halides 699
1.4.1.2.1.1.2 Coupling with Methylsulfanyl-Substituted N-Heterocycles 704
1.4.1.2.1.2 Use of N-Heterocyclic Carbene Ligands 705
1.4.1.2.2 Nickel-Catalyzed Reactions 708
1.4.1.2.2.1 Use of Phosphine Ligands 708
1.4.1.2.2.1.1 Cross Coupling with Hetaryl Halides 708
1.4.1.2.2.1.2 Cross Coupling with Aryltrimethylammonium Iodides 711
1.4.1.2.2.1.3 Cross Coupling with Methylsulfanyl-Substituted Heterocycles 712
1.4.1.2.2.2 N-Heterocyclic Carbene--Nickel Catalyzed Cross Coupling 713
1.4.1.2.3 Cobalt-Catalyzed Reactions 713
1.4.1.2.3.1 Cross Coupling with Hetaryl Chlorides 713
1.4.1.2.3.2 Cross Coupling with Methylsulfanyl-Substituted Hetaryl Compounds 716
1.4.1.3 Alkenylation of Arylzinc Compounds 717
1.4.1.3.1 Palladium-Catalyzed Reactions 717
1.4.1.3.1.1 Coupling with Alkenyl Iodides 717
1.4.1.3.1.2 Coupling with Alkenyl Bromides and Chlorides 719
1.4.1.3.1.3 Coupling with Tetrafluoroethene 721
1.4.1.3.1.4 Coupling with Other Electrophiles 722
1.4.1.3.2 Nickel-Catalyzed Reactions 724
1.4.1.3.2.1 Coupling with Halides and Pseudohalides 724
1.4.1.3.2.2 Coupling with Alkenyl Sulfones and Sulfoxides 725
1.4.1.3.2.3 Coupling with Alkenyl Phosphates 725
1.4.1.4 Alkylation of Arylzinc Compounds 726
1.4.1.4.1 Classical Cross Coupling 726
1.4.1.4.1.1 Palladium-Catalyzed Reactions 726
1.4.1.4.1.2 Nickel-Catalyzed Reactions 728
1.4.1.4.1.2.1 With Monophosphine Ligands 728
1.4.1.4.1.2.2 With a Promoter: 4-(Trifluoromethyl)styrene 729
1.4.1.4.1.2.3 With Nitrogen-Containing Tridentate Ligands 730
1.4.1.4.1.3 Rhodium-Catalyzed Reactions 733
1.4.1.4.1.4 Iron-Catalyzed Reactions 735
1.4.1.4.1.4.1 With an Additive 735
1.4.1.4.1.4.2 With a Phosphine Ligand 738
1.4.1.4.2 Oxidative Cross Coupling 741
1.4.1.5 Formation of Diarylmethanes from Arylzinc Compounds 742
1.4.1.5.1 Palladium-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Benzylic Electrophiles 743
1.4.1.5.2 Iron-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Benzyl Halides and Phosphates 744
1.4.1.5.3 Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Benzyl Chlorides 745
1.4.1.5.4 Rhodium-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Benzyl Bromides 747
1.4.1.6 Nickel-Catalyzed Asymmetric Cross-Coupling Reactions of Arylzincs with Racemic Propargylic Halides 747
1.4.1.7 Formation of Aromatic Ketones from Arylzinc Compounds 748
1.4.1.7.1 Palladium-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Acyl Chlorides 749
1.4.1.7.1.1 Palladium-Catalyzed Formation of Aromatic Ketones Using Phosphine Ligands 749
1.4.1.7.1.2 Palladium-Catalyzed Formation of Aromatic Ketones Using Phosphinous Acids as Ligands 749
1.4.1.7.2 Nickel-Catalyzed Cross-Coupling Reactions 751
1.4.1.7.2.1 Nickel-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Acyl Fluorides 751
1.4.1.7.2.2 Nickel-Catalyzed Cross Coupling Reactions of Arylzinc Species with Acyl Chlorides 752
1.4.1.7.2.3 Nickel-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Anhydrides 753
1.4.1.7.3 Cross-Coupling Reactions of Arylzinc Species with Acyl Chlorides in the Presence of Copper Salts 754
1.4.1.7.4 Cobalt-Catalyzed Cross-Coupling Reactions 755
1.4.1.7.4.1 Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Acyl Chlorides 755
1.4.1.7.4.2 Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Carboxylic Anhydrides 756
1.4.1.8 Palladium-Catalyzed Cross-Coupling Reactions of Arylzinc Species with Methylsulfanyl-Substituted Alkynes 757
1.4.2 Hetarylzinc Cross-Coupling Reactions 762
1.4.2.1 The Basic Properties of Five- and Six-Membered Hetarenes 762
1.4.2.2 Regio- and Chemoselectivity in Metalation Reactions 763
1.4.2.3 Cross-Coupling Reactions in Carbon--Carbon Bond Formation in Hetarenes 766
1.4.2.3.1 Cross Coupling after Metal Insertion into Carbon--Halogen Bonds 766
1.4.2.3.1.1 Zinc Insertion into the C--X Bond and Cross Coupling 766
1.4.2.3.1.1.1 Lithiation Followed by Transmetalation to Hetarylzinc Reagents before Cross Coupling 776
1.4.2.3.1.1.2 Magnesiation and Zinc Transmetalation before Cross Coupling 778
1.4.2.3.2 Cross Coupling after Oxidative Metalation by C--H Insertion 783
1.4.2.3.2.1 Oxidative Zincation 783
1.4.2.3.2.1.1 Lithiation and Zinc Transmetalation before Cross Coupling 788
1.4.2.3.2.1.2 Magnesiation and Zinc Transmetalation before Cross Coupling 792
1.4.2.3.3 Preparation of Dihetarylzinc Reagents Followed by Cross-Coupling Reactions 799
1.4.2.3.4 Nickel Catalysis in Hetarylzinc Cross-Coupling Reactions 804
1.4.2.3.5 Hetarylzinc Reactions with Acid Chlorides: Ketone Formation 806
1.4.3 Alkenylzinc Cross-Coupling Reactions 810
1.4.3.1 Preparation of Alkenylzinc Reagents 811
1.4.3.1.1 Direct Insertion of Zinc into Carbon--Halogen Bonds 811
1.4.3.1.2 Transmetalation of Alkenylmetal Species to Alkenylzinc 812
1.4.3.1.2.1 Using Alkenylboron Species 812
1.4.3.1.2.2 Using Alkenyllithium Species 813
1.4.3.1.2.3 Using Alkenylmagnesium Species 813
1.4.3.1.2.4 Using Alkenylcopper Species 814
1.4.3.1.2.5 Using Alkenylzirconium Species 814
1.4.3.1.3 Hydrozincation and Carbozincation of Alkynes 814
1.4.3.1.4 Metalation with Zinc Amide Bases 817
1.4.3.2 Alkenylzinc Reagents in Cross-Coupling Reactions 817
1.4.3.2.1 C(sp2)--C(sp3) Cross-Coupling Reactions 818
1.4.3.2.2 C(sp2)--C(sp2) Cross-Coupling Reactions 821
1.4.3.2.3 C(sp2)--C(sp) Cross-Coupling Reactions 836
1.4.4 Alkylzinc Cross-Coupling Reactions 840
1.4.4.1 Formation of Alkylzinc Nucleophiles 840
1.4.4.1.1 Direct Insertion of Zinc into Alkyl Halides 840
1.4.4.1.1.1 Insertion into Alkyl Iodides 840
1.4.4.1.1.2 Insertion into Alkyl Bromides 841
1.4.4.1.1.3 Lithium Chloride Mediated Insertion into Alkyl Halides 842
1.4.4.1.1.4 Insertion Using Rieke Zinc 843
1.4.4.1.2 Transmetalation 843
1.4.4.2 Cross Coupling Using Primary Alkylzinc Nucleophiles 844
1.4.4.2.1 Coupling with Aryl Electrophiles 844
1.4.4.2.1.1 Coupling with Aryl Iodides 844
1.4.4.2.1.2 Coupling with Aryl Bromides 847
1.4.4.2.1.3 Coupling with Aryl Chlorides 851
1.4.4.2.1.4 Coupling with Aryl Sulfonates 853
1.4.4.2.2 Coupling with Alkyl Electrophiles 856
1.4.4.2.2.1 Coupling with Primary Electrophiles 856
1.4.4.2.2.1.1 Coupling with Primary Alkyl Iodides 856
1.4.4.2.2.1.2 Coupling with Primary Alkyl Bromides 858
1.4.4.2.2.1.3 Coupling with Primary Alkyl Chlorides and 4-Toluenesulfonates 861
1.4.4.2.2.2 Coupling with Secondary Electrophiles 862
1.4.4.2.2.2.1 Coupling with Unactivated Secondary Alkyl Halides 862
1.4.4.2.2.2.2 Coupling with Benzylic Halides 864
1.4.4.2.2.2.3 Coupling with a-Bromo Amides 865
1.4.4.2.3 Coupling with Other Electrophiles 867
1.4.4.2.3.1 Coupling with Alkenyl Electrophiles 867
1.4.4.2.3.2 Coupling with Alkynyl Electrophiles 869
1.4.4.2.3.3 Coupling with Thioesters 870
1.4.4.3 Cross Coupling Using Secondary Alkylzinc Nucleophiles 871
1.4.4.3.1 Coupling with Aryl Electrophiles 871
1.4.4.3.1.1 Coupling with Aryl Iodides 871
1.4.4.3.1.2 Coupling with Aryl Bromides and Chlorides 873
1.4.4.3.1.3 Coupling with Aryl Sulfonates 875
1.4.4.3.2 Coupling with Alkyl Electrophiles 875
1.4.4.3.2.1 Coupling with Primary Electrophiles 875
1.4.4.3.2.2 Coupling with Activated Secondary Electrophiles 876
1.4.4.3.2.2.1 Coupling with Propargylic Electrophiles 876
1.4.4.3.2.2.2 Coupling with a-Chloro Ketones 878
1.4.4.3.3 Coupling with Other Electrophiles 879
1.4.4.3.3.1 Coupling with Alkenyl Electrophiles 879
1.4.4.3.3.2 Coupling with Alkynyl Electrophiles 880
1.4.5 Alkynyl-, Benzyl-, and Propargylzinc Cross-Coupling Reactions 884
1.4.5.1 Alkynylzinc Derivatives 884
1.4.5.1.1 Preparation of Alkynylzinc Derivatives 884
1.4.5.1.2 Cross-Coupling Reactions of Alkynylzinc Derivatives 886
1.4.5.1.2.1 Coupling with Aryl Electrophiles 887
1.4.5.1.2.2 Coupling with Hetaryl Electrophiles 891
1.4.5.1.2.3 Coupling with Alkenyl Electrophiles 895
1.4.5.2 Benzylic and Propargylic Organozinc Derivatives 900
1.4.5.2.1 Preparation of Benzylic and Propargylic Organozinc Derivatives 900
1.4.5.2.2 Cross-Coupling Reactions of Benzylic and Propargylic Organozinc Derivatives 901
1.5 Magnesium 908
1.5.1 Aryl-, Hetaryl-, and Alkenylmagnesium Cross-Coupling Reactions 908
1.5.1.1 Coupling Reactions of Arylmagnesium Compounds 908
1.5.1.1.1 Reactions with Aryl--X or Hetaryl--X Electrophiles 908
1.5.1.1.2 Reactions with Alkenyl--X or Alkynyl--X Electrophiles 917
1.5.1.1.3 Reactions with Alkyl--X Electrophiles 920
1.5.1.1.4 Asymmetric Reactions 925
1.5.1.2 Coupling Reactions of Hetarylmagnesium Compounds 929
1.5.1.2.1 Reactions with Aryl--X or Hetaryl--X Electrophiles 930
1.5.1.2.2 Reactions with Alkyl--X Electrophiles 932
1.5.1.3 Coupling Reactions of Alkenylmagnesium Compounds 934
1.5.1.3.1 Reactions with Aryl--X or Hetaryl--X Electrophiles 935
1.5.1.3.2 Reactions with Alkenyl--X or Alkyl--X Electrophiles 936
1.5.2 Alkyl- and Alkynylmagnesium Cross-Coupling Reactions 944
1.5.2.1 C--C Cross Coupling with Alkylmagnesium Reagents 944
1.5.2.1.1 C(sp2)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 945
1.5.2.1.1.1 Nickel-Catalyzed C(sp2)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 945
1.5.2.1.1.1.1 Cross Coupling via Carbon--Halogen Bond Activation 945
1.5.2.1.1.1.2 Cross Coupling via Carbon--Oxygen Bond Activation 946
1.5.2.1.1.1.3 Cross Coupling via Carbon--Sulfur Bond Activation 948
1.5.2.1.1.2 Palladium-Catalyzed C(sp2)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 949
1.5.2.1.1.2.1 Cross Coupling via Carbon--Halogen Bond Activation 949
1.5.2.1.1.2.2 Cross Coupling via Carbon--Oxygen Bond Activation 950
1.5.2.1.1.3 Iron-Catalyzed C(sp2)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 951
1.5.2.1.1.3.1 Cross Coupling via Carbon--Halogen Bond Activation 951
1.5.2.1.1.3.2 Cross Coupling via Carbon--Oxygen Bond Activation 952
1.5.2.1.1.3.3 Cross Coupling via Carbonyl--Halogen Bond Activation 953
1.5.2.1.2 C(sp3)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 954
1.5.2.1.2.1 Nickel-Catalyzed C(sp3)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 954
1.5.2.1.2.2 Iron-Catalyzed C(sp3)--C(sp3) Cross Coupling with Alkylmagnesium Reagents 955
1.5.2.2 C--C Cross Coupling with Alkynylmagnesium Reagents 956
1.5.2.2.1 C(sp2)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 956
1.5.2.2.1.1 Palladium-Catalyzed C(sp2)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 956
1.5.2.2.1.2 Cobalt-Catalyzed C(sp2)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 957
1.5.2.2.1.3 Iron-Catalyzed C(sp2)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 959
1.5.2.2.2 C(sp3)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 960
1.5.2.2.2.1 Palladium-Catalyzed C(sp3)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 960
1.5.2.2.2.2 Cobalt-Catalyzed C(sp3)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 961
1.5.2.2.2.3 Nickel-Catalyzed C(sp3)--C(sp) Cross Coupling with Alkynylmagnesium Reagents 961
Keyword Index 964
Author Index 1016
Abbreviations 1044

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Acylsilicon • Alkenylboron • Alkenylmagnesium • Alkenylsilicon • Alkenylzinc • Alkylboron • Alkylmagnesium • Alkylsilicon • Alkylzinc • Alkynylboron • Alkynylmagnesium • Alkynylsilicon • Alkynylzinc • Allylboron • arylboron • arylboronic acid • Arylmagnesium • Arylsilicon • Arylzinc • Benzylzinc • Chemische Synthese • chemistry reference work • cross-coupling • Cross Coupling • cross coupling reaction • cross-coupling reaction • Functional Group • functional groups • Heck Reaction • Hetarylboron • Hetarylmagnesium • Hetarylsilicon • Hetarylzinc • Magnesium • Mechanism • Method • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Propargylzinc • reference work • Review • review organic synthesis • review synthetic methods • Suzuki reaction • Synthese • synthesis • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-179051-2 / 3131790512
ISBN-13 978-3-13-179051-4 / 9783131790514
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 36,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95