Science of Synthesis Knowledge Updates 2011 Vol. 3 (eBook)
572 Seiten
Thieme (Verlag)
978-3-13-178751-4 (ISBN)
The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.
Content of this volume: Organometallic Complexes of Titanium, Silenes, Carboxylic Acids, Carboxylic Acid Esters, Imines, Iminium Salts, Alkanesulfinic Acids and Acyclic Derivatives, Alkanethiols, Alkanethiolates of Group 1, 2, and 13-15 Metals, Cyclic Alkanetelluronic Acid Derivatives, Metal-Mediated Cyclizations of Amines.
Science of Synthesis: Knowledge Updates 2011/3 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 18
Table of Contents 20
Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) 34
2.10 Product Class 10: Organometallic Complexes of Titanium 34
2.10.18 Organometallic Complexes of Titanium 34
2.10.18.1 Titanium-Mediated Alkenation Reactions 34
2.10.18.1.1 Method 1: Using Thioacetals as Carbene Complex Precursors 34
2.10.18.1.2 Method 2: Using Monohalides as Carbene Complex Precursors 45
2.10.18.1.3 Method 3: Using gem-Dichlorides as Carbene Complex Precursors 46
2.10.18.1.4 Method 4: Using 1,1-Dichloroalk-1-enes as Carbene Complex Precursors 47
2.10.18.1.5 Method 5: Using Alkenyl and Alkynyl Sulfones 48
2.10.18.2 Titanium-Mediated Alkene Metathesis 49
2.10.18.2.1 Method 1: Metathesis and Related Reactions via Titanacyclobutanes 49
2.10.18.2.1.1 Variation 1: Reaction of Titanocene Alkylidenes with Alkenes 49
2.10.18.2.1.2 Variation 2: Intramolecular Reaction of Titanocene Alkylidenes Bearing an Alkene Moiety 52
2.10.18.2.1.3 Variation 3: Reaction of Unsaturated Titanocene–Carbene Complexes with Alkenes 56
2.10.18.2.2 Method 2: Metathesis and Related Reactions via Titanacyclobutenes 60
2.10.18.2.2.1 Variation 1: Reaction of Alkenylcarbene Complexes of Titanium with Acetylene 60
2.10.18.2.2.2 Variation 2: Reaction of Titanocene Alkylidenes with Alkynes 60
2.10.18.2.2.3 Variation 3: Reaction of Titanocene Alkenylidenes with Alkynes 63
2.10.18.2.2.4 Variation 4: Reaction of Titanocene Alkylidenes with Alkynyl Sulfones 64
2.10.18.2.2.5 Variation 5: Valence Tautomerization of Alkenylcarbene Complexes 65
2.10.18.2.2.6 Variation 6: Titanium-Promoted Alkylation of Propargyl Carbonates 66
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 70
4.4 Product Class 4: Silicon Compounds 70
4.4.2.5 Silenes (Update 1) 70
4.4.2.5.1 Method 1: Synthesis of Silenes by Photolysis or Thermolysis of Acylpolysilanes and Derivatives 72
4.4.2.5.1.1 Variation 1: Thermolysis of Carbamoylpolysilanes 72
4.4.2.5.1.2 Variation 2: Thermal Rearrangement of Mercury Bis(acylsilanes) 73
4.4.2.5.2 Method 2: Salt Elimination Methods 74
4.4.2.5.2.1 Variation 1: Reaction of Lithium Disilenides with Acyl or Vinyl Halides 75
4.4.2.5.2.2 Variation 2: Reaction of Dilithiosiloles with Ketones 76
4.4.2.5.3 Method 3: Sila-Peterson Alkenation Reactions 76
4.4.2.5.4 Method 4: Silylene–Silene and Carbene–Silene Isomerizations 78
4.4.2.6 Silenes (Update 2) 80
4.4.2.6.1 Silenolates 80
4.4.2.6.1.1 Method 1: Synthesis of Silen-2-olates by Trimethylsilyl–Metal Exchange 84
4.4.2.6.1.1.1 Variation 1: With Germyllithium Reagents 84
4.4.2.6.1.1.2 Variation 2: With Silyllithium Reagents 84
4.4.2.6.1.1.3 Variation 3: With Potassium tert-Butoxide 85
4.4.2.6.2 Method 2: Synthesis of Silen-2-olates by Reaction of Bis(lithiosilyl)mercury Compounds with Acyl Chlorides 86
Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides Carboxylic Acids and Acid Salts
20.2 Product Class 2: Carboxylic Acids 90
20.2.1.2.10 Synthesis from Carboxylic Acid Derivatives 90
20.2.1.2.10.1 Method 1: Hydrolysis of Esters 90
20.2.1.2.10.1.1 Variation 1: Nucleophile-Promoted Cleavage 90
20.2.1.2.10.1.2 Variation 2: Hydrogenolytic Cleavage of Benzyl Esters 91
20.2.1.2.10.1.3 Variation 3: Transition-Metal-Mediated Cleavage of Allyl Esters 92
20.2.1.2.10.1.4 Variation 4: Cleavage of 2-Haloethyl Esters 94
20.2.1.2.10.1.5 Variation 5: Light-Induced Cleavage 96
20.2.1.2.10.1.6 Variation 6: Fluoride-Mediated Cleavage of Silyl Esters 97
20.2.1.2.10.1.7 Variation 7: Enzymatic Hydrolysis 98
20.2.1.2.10.2 Method 2: Hydrolysis of Hydrazides 99
20.2.1.2.10.2.1 Variation 1: Base-Mediated Hydrolysis 99
20.2.1.2.10.2.2 Variation 2: Acid-Catalyzed Hydrolysis 100
20.2.1.2.10.2.3 Variation 3: Oxidative Hydrolysis 101
20.2.1.2.10.2.4 Variation 4: Enzymatic Hydrolysis 102
20.2.1.2.10.3 Method 3: Hydrolysis of 1,1,1-Trihalides 103
20.5 Product Class 5: Carboxylic Acid Esters 110
20.5.1.2.8 Synthesis from Carboxylic Acids and Derivatives 110
20.5.1.2.8.1 Synthesis from Carboxylic Acids 110
20.5.1.2.8.1.1 Method 1: Synthesis via Active Esters 110
20.5.1.2.8.1.1.1 Variation 1: Via Mixed Sulfonic Anhydrides 111
20.5.1.2.8.1.1.2 Variation 2: Via (Acyloxy)phosphorus Compounds 113
20.5.1.2.8.1.1.3 Variation 3: Via Esters of Electron-Deficient Alcohols or of N-Acylhydroxylamines 114
20.5.1.2.8.1.1.4 Variation 4: Via Ketene Acyl Acetals 115
20.5.1.2.8.1.2 Method 2: Oxidative Coupling 116
20.5.1.2.8.1.3 Method 3: Electrophilic Esterification 116
20.5.1.2.8.1.3.1 Variation 1: Using Alkyl Halides 116
20.5.1.2.8.1.3.2 Variation 2: Using Diazoalkanes 118
20.5.1.2.8.1.4 Method 4: Enzymatic Esterification 119
20.5.1.2.8.2 Synthesis from Carboxylic Acid Derivatives 120
20.5.1.2.8.2.1 Method 1: Synthesis from Thioesters 120
20.5.1.2.8.2.2 Method 2: Synthesis from Carboxylic Acid Hydrazides 121
Volume 27: Heteroatom Analogues of Aldehydes and Ketones 126
27.7 Product Class 7: Imines 126
27.7.6 Imines 126
27.7.6.1 N-Unsubstituted Imines 126
27.7.6.1.1 Synthesis of N-Unsubstituted Imines 126
27.7.6.1.1.1 Method 1: Reaction of Aldehydes and Ketones with Ammonia 126
27.7.6.1.1.2 Method 2: Synthesis from Oximes 127
27.7.6.1.1.3 Method 3: Oxidation of Primary Amines 128
27.7.6.1.1.4 Method 4: Synthesis from Nitriles 128
27.7.6.1.1.5 Method 5: Miscellaneous Procedures 130
27.7.6.2 N-Silylimines 130
27.7.6.2.1 Synthesis of N-Silylimines 130
27.7.6.2.1.1 Method 1: Reaction of Carbonyl Compounds with Lithium Hexamethyldisilazanide 130
27.7.6.2.1.2 Method 2: Reaction of Nitriles with Organometallic Reagents 131
27.7.6.3 N-Alkyl- and N-Arylimines 132
27.7.6.3.1 Synthesis of N-Alkyl- and N-Arylimines 133
27.7.6.3.1.1 Method 1: Reaction of Aldehydes or Ketones with Primary Amines 133
27.7.6.3.1.1.1 Variation 1: With Azeotropic Removal of Water 133
27.7.6.3.1.1.2 Variation 2: With Titanium(IV) Chloride 133
27.7.6.3.1.1.3 Variation 3: With Solid-Phase Lewis Acids 135
27.7.6.3.1.1.4 Variation 4: With Other Lewis Acids 135
27.7.6.3.1.1.5 Variation 5: Miscellaneous Procedures 137
27.7.6.3.1.2 Method 2: Reaction of Imidates with Organometallic Reagents 137
27.7.6.3.1.3 Method 3: Synthesis from Amides 138
27.7.6.3.1.3.1 Variation 1: By Reduction 138
27.7.6.3.1.3.2 Variation 2: By Addition of Organometallic Reagents 139
27.7.6.3.1.3.3 Variation 3: By Hydrolysis of N-Vinyl Lactams 140
27.7.6.3.1.3.4 Variation 4: Via Nitrilium Ions 140
27.7.6.3.1.3.5 Variation 5: Miscellaneous Procedures 142
27.7.6.3.1.4 Method 4: Synthesis from Oximes 142
27.7.6.3.1.5 Method 5: Synthesis from Imidoyl Halides 144
27.7.6.3.1.5.1 Variation 1: By Reduction 144
27.7.6.3.1.5.2 Variation 2: By Substitution 145
27.7.6.3.1.5.3 Variation 3: Via Palladium-Catalyzed Cross Coupling 145
27.7.6.3.1.5.4 Variation 4: Via 1,3-Dipolar Cycloaddition 147
27.7.6.3.1.6 Method 6: Oxidation of Amines 147
27.7.6.3.1.6.1 Variation 1: Oxidative Amination of Alkenes 147
27.7.6.3.1.6.2 Variation 2: Oxidation of Secondary Amines 147
27.7.6.3.1.7 Method 7: Dehydrohalogenation of N-Haloamines 149
27.7.6.3.1.8 Method 8: Reaction of Aldehydes and Ketones with Azides (Aza-Wittig Reaction) 151
27.7.6.3.1.9 Method 9: Addition of Primary Amines to Alkynes 153
27.7.6.3.1.10 Method 10: Addition of Organometallic Compounds to Nitriles 156
27.7.6.3.1.11 Method 11: Addition/Rearrangement of Alkenic Azides 157
27.7.6.3.1.12 Method 12: C-Alkylation of 1-Azaallyl Anions 158
27.7.6.3.1.13 Method 13: N-Alkylation of N-Unsubstituted Imines 159
27.7.6.3.1.14 Method 14: a-Halogenation of Imines 160
27.7.6.3.1.15 Method 15: Synthesis from Enamines 162
27.7.6.3.1.16 Method 16: Synthesis from Isocyanides 163
27.7.6.3.1.17 Method 17: Synthesis from Alkenyl Halides 165
27.7.6.3.1.18 Method 18: Miscellaneous Procedures 166
27.7.6.4 2H-Azirines 169
27.7.6.4.1 Synthesis of 2H-Azirines 169
27.7.6.4.1.1 Method 1: Synthesis from Oximes and Hydrazonium Salts 169
27.7.6.4.1.2 Method 2: Oxidation of Aziridines 170
27.7.6.4.1.3 Method 3: Elimination from N-Substituted Aziridines 170
27.7.6.4.1.4 Method 4: Synthesis from Vinyl Azides 171
27.7.6.4.1.5 Method 5: Synthesis from Other Azirines 171
27.7.6.4.1.6 Method 6: Miscellaneous Procedures 171
27.7.6.5 2,3-Dihydroazetes 173
27.7.6.5.1 Synthesis of 2,3-Dihydroazetes 173
27.7.6.5.1.1 Method 1: Miscellaneous Procedures 173
27.8 Product Class 8: Iminium Salts 184
27.8.2 Iminium Salts 184
27.8.2.1 Synthesis of Iminium Salts 184
27.8.2.1.1 Method 1: Reaction of Secondary Amines with Aldehydes or Ketones 184
27.8.2.1.2 Method 2: Reaction of Tertiary Amines 187
27.8.2.1.3 Method 3: Cleavage of Aminals 188
27.8.2.1.4 Method 4: Cleavage of Hemiaminals 189
27.8.2.1.5 Method 5: Synthesis from Aldimines and Ketimines 191
27.8.2.1.5.1 Variation 1: By Alkylation 191
27.8.2.1.5.2 Variation 2: By Protonation 193
27.8.2.1.6 Method 6: Synthesis from Enamines 194
27.8.2.1.6.1 Variation 1: By Alkylation 194
27.8.2.1.6.2 Variation 2: By Protonation 195
27.8.2.1.6.3 Variation 3: By Halogenation 196
27.8.2.1.7 Method 7: Synthesis from Enaminones 197
27.8.2.1.8 Method 8: Cyclization of Alkenimines 199
27.8.2.1.8.1 Variation 1: Electrophile-Induced Cyclization of .,d-Unsaturated Imines 199
27.8.2.1.8.2 Variation 2: Treatment of .,d-Unsaturated Imines with Hydrochloric Acid 201
27.8.2.1.9 Method 9: Vilsmeier Formylation 201
27.8.2.1.10 Method 10: Synthesis from Other Iminium Salts 203
27.8.2.1.10.1 Variation 1: By Cycloaddition 203
27.8.2.1.10.2 Variation 2: By Anion Exchange 204
27.8.2.1.11 Method 11: Oxidation of Amino Ketene Acetals 205
27.8.2.1.12 Method 12: Organoboron Compounds as Iminium Ion Generators 205
27.8.2.1.13 Method 13: Miscellaneous Reactions 206
Volume 39: Sulfur, Selenium, and Tellurium 212
39.3 Product Class 3: Alkanesulfinic Acids and Acyclic Derivatives 212
39.3.9 Alkanesulfinic Acids and Acyclic Derivatives 212
39.3.9.1 Alkanesulfinyl Halides 212
39.3.9.1.1 Applications of Alkanesulfinyl Halides in Organic Synthesis 212
39.3.9.1.1.1 Method 1: Synthesis of 1-(tert-Butylsulfonyl)aziridines 212
39.3.9.1.1.2 Method 2: Synthesis of Alkyl Sulfoxides 212
39.3.9.1.1.3 Method 3: Synthesis of Dipeptides 213
39.3.9.1.1.4 Method 4: Synthesis of (Alkylsulfonyl)allenes 214
39.3.9.2 Alkanesulfinic Acid Esters 215
39.3.9.2.1 Synthesis of Alkanesulfinic Acid Esters 215
39.3.9.2.1.1 Method 1: Reaction of Alk-2-ene-1-sulfinic Acid–Boron Trichloride Complexes with Ethers 216
39.3.9.2.1.2 Method 2: Reaction of Alkanesulfinyl Chlorides with Alcohols: Asymmetric Synthesis of Alkanesulfinic Acid Esters 217
39.3.9.3 Alkanethiosulfinic Acid Esters 218
39.3.9.3.1 Synthesis of Alkanethiosulfinic Acid Esters 218
39.3.9.3.1.1 Method 1: Synthesis from Disulfides 218
39.3.9.3.1.1.1 Variation 1: By Oxidation with 3-Chloroperoxybenzoic Acid 218
39.3.9.3.1.1.2 Variation 2: By Asymmetric Oxidation 218
39.3.9.4 Alkanesulfinamides 220
39.3.9.4.1 Synthesis of Alkanesulfinamides 220
39.3.9.4.1.1 Method 1: Reduction of N-Alkylidenealkanesulfinamides 220
39.3.9.4.1.1.1 Variation 1: Using Catecholborane or Lithium Triethylborohydride 220
39.3.9.4.1.1.2 Variation 2: Using Sodium Borohydride or L-Selectride 221
39.3.9.4.1.1.3 Variation 3: Using Diisobutylaluminum Hydride 224
39.3.9.4.1.1.4 Variation 4: Stereoselective Reduction–Cyclization 225
39.3.9.4.1.1.5 Variation 5: Using Diethylzinc and Nickel(II) Acetylacetonate 226
39.3.9.4.1.2 Method 2: Nucleophilic Addition to N-Alkylidenealkanesulfinamides 227
39.3.9.4.1.2.1 Variation 1: Addition of Grignard Reagents 227
39.3.9.4.1.2.2 Variation 2: Addition of Organolithium Reagents 228
39.3.9.4.1.2.3 Variation 3: Addition of Titanium Enolates 229
39.3.9.4.1.2.4 Variation 4: Addition of Zinc Enolates 231
39.3.9.4.1.2.5 Variation 5: Addition of Zinc/Copper Enolates 233
39.3.9.4.1.2.6 Variation 6: Addition of (Trifluoromethyl)trimethylsilane 234
39.3.9.4.1.2.7 Variation 7: Addition of Silyl Nucleophiles 235
39.3.9.4.1.2.8 Variation 8: Addition of Triorganozincates 236
39.3.9.4.1.2.9 Variation 9: Addition of a-Dithiolanecarboxylates 237
39.3.9.4.1.2.10 Variation 10: Addition of Vinylaluminum Reagents 238
39.3.9.4.1.2.11 Variation 11: Allylation Using Allyl Bromide and Zinc 239
39.3.9.4.1.2.12 Variation 12: Allylation Using Allyl Bromide and Indium 241
39.3.9.4.1.2.13 Variation 13: Allylation Using Allene 243
39.3.9.4.1.2.14 Variation 14: Allylation Using Allylzinc Reagents 244
39.3.9.4.1.2.15 Variation 15: Addition of Lithium Acetylides 246
39.3.9.4.1.2.16 Variation 16: Addition of Lithium Acetylides in the Presence of Trimethylaluminum 247
39.3.9.4.1.2.17 Variation 17: Addition of Lithium Acetylides in the Presence of Titanium(IV) Isopropoxide 248
39.3.9.4.1.2.18 Variation 18: Addition of Alkynylmagnesium Chlorides 249
39.3.9.4.1.2.19 Variation 19: Addition of Arylboronic Acids 250
39.3.9.4.1.2.20 Variation 20: Addition of Alkenyl(trifluoro)borates 252
39.3.9.4.1.2.21 Variation 21: Addition of Silyllithium Reagents 253
39.3.9.4.1.2.22 Variation 22: Addition of Dialkylphosphine Oxides 254
39.3.9.4.1.2.23 Variation 23: Addition of (Tributylstannyl)metals 255
39.3.9.4.1.3 Method 3: Samarium-Promoted Coupling 257
39.3.9.4.1.3.1 Variation 1: Reductive Homocoupling with Samarium(II) Iodide 257
39.3.9.4.1.3.2 Variation 2: Coupling with Nitrones 257
39.3.9.4.1.3.3 Variation 3: Coupling with Aldehydes 258
39.3.9.5 N-Alkylidenealkanesulfinamides 259
39.3.9.5.1 Synthesis of N-Alkylidenealkanesulfinamides 260
39.3.9.5.1.1 Method 1: Condensation of Alkanesulfinamides with Aldehydes and Ketones 260
39.3.9.5.1.1.1 Variation 1: Using Magnesium Sulfate 260
39.3.9.5.1.1.2 Variation 2: Using Copper(II) Sulfate 260
39.3.9.5.1.1.3 Variation 3: Using Titanium(IV) Ethoxide 261
39.3.9.5.1.1.4 Variation 4: Using Cesium Carbonate 262
39.3.9.5.1.1.5 Variation 5: Using Potassium Hydrogen Sulfate 263
39.3.9.5.1.1.6 Variation 6: Using Strong Bases 264
39.3.9.5.1.1.7 Variation 7: Under Barbier-Type Conditions 265
39.3.9.5.1.1.8 Variation 8: Using Cesium Fluoride 266
39.3.9.5.2 Applications of N-Alkylidenealkanesulfinamides in Organic Synthesis 267
39.3.9.5.2.1 Method 1: Synthesis of Amines 267
39.3.9.5.2.2 Method 2: Synthesis of Nitriles 267
39.5 Product Class 5: Alkanethiols 272
39.5.2 Alkanethiols 272
39.5.2.1 Applications of Alkanethiols in Organic Synthesis 272
39.5.2.1.1 Method 1: Synthesis of Sulfonyl Chlorides from Alkanethiols 275
39.5.2.1.2 Method 2: Synthesis of Alkanesulfonamides from Alkanethiols 276
39.5.2.1.3 Method 3: Synthesis of Thiosulfinates from Alkanethiols 276
39.5.2.1.4 Method 4: Synthesis of Sulfides 277
39.5.2.1.4.1 Variation 1: Reaction of Alkanethiols with Alkyl Halides 277
39.5.2.1.4.2 Variation 2: Preparation of Dialkyl Sulfides by Substitution of Alcohols and Carbamates 277
39.5.2.1.4.3 Variation 3: Ring Opening of Cyclic Ethers and Aziridines 279
39.5.2.1.4.4 Variation 4: Addition of Alkanethiols to Simple Alkenes 280
39.5.2.1.4.5 Variation 5: Miscellaneous Reactions for Sulfide Formation 281
39.5.2.1.5 Method 5: Synthesis of ß-Sulfido Carbonyl and Related Compounds 281
39.5.2.1.6 Method 6: Synthesis of Alkyl Aryl Sulfides 284
39.5.2.1.7 Method 7: Synthesis of Alkyl Vinyl Sulfides 287
39.5.2.1.7.1 Variation 1: Coupling of Alkanethiols with Vinyl Halides 287
39.5.2.1.7.2 Variation 2: Addition of Alkanethiols to Alkynes 290
39.5.2.1.8 Method 8: Synthesis of Acyclic Dialkyl Disulfides 291
39.5.2.1.8.1 Variation 1: Symmetrical Dialkyl Disulfides 291
39.5.2.1.8.2 Variation 2: Unsymmetrical Dialkyl Disulfides 293
39.5.2.1.9 Method 9: Synthesis of Acyclic Dialkyl Trisulfides 296
39.5.2.1.9.1 Variation 1: Symmetrical Dialkyl Trisulfides 296
39.5.2.1.9.2 Variation 2: Unsymmetrical Dialkyl Trisulfides 297
39.5.2.1.10 Method 10: Synthesis of Dithioacetals and Dithioketals 299
39.5.2.1.11 Method 11: Synthesis of O,S-Acetals 302
39.5.2.1.12 Method 12: Synthesis of Thioesters 305
39.5.2.1.13 Method 13: Synthesis of Thiocarbamates 308
39.5.2.1.14 Method 14: Miscellaneous Reactions Involving Application of Alkanethiols 310
39.6 Product Class 6: Acyclic Alkanethiolates 314
39.6.1.2 Alkanethiolates of Group 1, 2, and 13–15 Metals 314
39.6.1.2.1 Applications of Alkanethiolates of Group 13–15 Metals in Organic Synthesis 314
39.6.1.2.1.1 Applications of Arsenic Alkanethiolates 314
39.6.1.2.1.1.1 Method 1: Preparation of Sulfonium Salts 314
39.6.1.2.1.1.2 Method 2: Preparation of Unsymmetrical Dialkyl Disulfides 315
39.6.1.2.1.1.3 Method 3: Preparation of (Alkylsulfanyl)stannanes 315
39.6.1.2.1.1.4 Method 4: Preparation of Phosphonotrithioate Derivatives. 315
39.6.1.2.1.1.5 Method 5: Preparation of Trialkylarsines 316
39.6.1.2.1.2 Applications of Silicon Alkanethiolates 316
39.6.1.2.1.2.1 Method 1: Preparation of O-Silyl O,S-Acetals, S,S-Acetals, and S,S-Ketals 316
39.6.1.2.1.2.2 Method 2: Preparation of S-Alkyl Thiocarboxylates 317
39.6.1.2.1.2.3 Method 3: Preparation of Dialkyl Sulfides 318
39.6.1.2.1.2.4 Method 4: Preparation of Methyl 1-Thioglycosides 322
39.6.1.2.1.2.5 Method 5: Preparation of Disulfides 322
39.6.1.2.1.2.6 Method 6: Miscellaneous Reactions of Silicon Alkanethiolates 323
39.6.1.2.1.3 Applications of Germanium Alkanethiolates 325
39.6.1.2.1.3.1 Method 1: Preparation of [(Alkylsulfanyl)alkyl]germanes 325
39.6.1.2.1.3.2 Method 2: Preparation of Phosphonodithioate Derivatives 325
39.6.1.2.1.4 Applications of Tin Alkanethiolates 326
39.6.1.2.1.4.1 Method 1: Preparation of Alkyl 1-Thioglycosides 326
39.6.1.2.1.4.2 Method 2: Preparation of Alkyl Aryl Sulfides and Alkyl Vinyl Sulfides 327
39.6.1.2.1.4.3 Method 3: Preparation of Alkyl Disulfides 328
39.6.1.2.1.4.4 Method 4: Miscellaneous Reactions of Tin Alkanethiolates 330
39.6.1.2.1.5 Applications of Lead Alkanethiolates 333
39.6.1.2.1.5.1 Method 1: Preparation of (Alkylsulfanyl)silanes 333
39.6.1.2.1.5.2 Method 2: Preparation of Trithioortho Esters 333
39.6.1.2.1.6 Applications of Boron Alkanethiolates 334
39.6.1.2.1.6.1 Method 1: Preparation of S-Alkyl Thiocarboxylates 334
39.6.1.2.1.6.2 Method 2: Preparation of Alkyl Aryl Sulfides and Alkyl Vinyl Sulfides 335
39.6.1.2.1.6.3 Method 3: Miscellaneous Reactions of Boron Alkanethiolates 337
39.6.1.2.1.7 Applications of Aluminum Alkanethiolates 339
39.6.1.2.1.7.1 Method 1: Preparation of S-Alkyl Thiocarboxylates and Related Compounds 339
39.6.1.2.1.7.2 Method 2: Preparation of ß-Alkylsulfanyl-Substituted Ketones and Related Compounds 341
39.6.1.2.1.7.3 Method 3: Preparation of Alkyl Alkanimidothioates 345
39.6.1.2.1.7.4 Method 4: Miscellaneous Reactions of Aluminum Alkanethiolates 346
39.6.1.2.1.8 Applications of Indium Alkanethiolates 348
39.6.1.2.1.8.1 Method 1: Preparation of Alkyl Aryl Sulfides 348
39.6.1.2.1.9 Applications of Thallium Alkanethiolates 349
39.6.1.2.1.9.1 Method 1: Preparation of S-Alkyl Thiocarboxylates 349
39.6.1.2.2 Applications of Alkanethiolates of Group 1 and 2 Metals in Organic Synthesis 350
39.6.1.2.2.1 Applications of Lithium Alkanethiolates 350
39.6.1.2.2.1.1 Method 1: Preparation of Sulfides 350
39.6.1.2.2.1.2 Method 2: Preparation of S-Alkyl Thiocarboxylates and Related Compounds 354
39.6.1.2.2.1.3 Method 3: Miscellaneous Reactions of Lithium Alkanethiolates 356
39.6.1.2.2.2 Applications of Sodium Alkanethiolates 358
39.6.1.2.2.2.1 Method 1: Preparation of Alkyl Sulfides 358
39.6.1.2.2.2.2 Method 2: Preparation of a-Alkylsulfanyl-Substituted Carbonyl Compounds 361
39.6.1.2.2.2.3 Method 3: Preparation of S-Alkyl Thiocarboxylates and Related Compounds 364
39.6.1.2.2.2.4 Method 4: Deprotection or Removal of Functional Groups 365
39.6.1.2.2.2.5 Method 5: Miscellaneous Reactions of Sodium Alkanethiolates 367
39.6.1.2.2.3 Applications of Potassium Alkanethiolates 369
39.6.1.2.2.3.1 Method 1: Miscellaneous Reactions of Potassium Alkanethiolates 369
39.6.1.2.2.4 Applications of Cesium Alkanethiolates 371
39.6.1.2.2.4.1 Method 1: Preparation of Alkyl Sulfides 371
39.6.1.2.2.5 Applications of Halomagnesium Alkanethiolates 372
39.6.1.2.2.5.1 Method 1: Deprotection of Functional Groups 372
39.39 Product Class 39: Tellurolanes, Larger Rings, and Derivatives of Various Oxidation States 378
39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives 378
39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives 380
39.39.2.1 Synthesis of Product Subclass 2 380
39.39.2.1.1 Cyclic Tellurone Derivatives 380
39.39.2.1.1.1 Method 1: Reaction of Spirodioxytelluranes with Hydrogen Peroxide 380
39.39.2.1.1.2 Method 2: Reaction of 2,2-Diiodo-1,3-dihydrobenzo[c]tellurophene with Sodium Diethyldithiocarbamate and Related Compounds 381
39.39.2.1.1.3 Method 3: Reaction of 1,1-Diiodo-1.4-tellurane with Tetraphenyl Onium Iodides 382
Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines 384
40.1 Product Class 1: Amino Compounds 384
40.1.1.5.5 Metal-Mediated Cyclizations of Amines 384
40.1.1.5.5.1 Metal-Catalyzed Cycloisomerizations of N-Tethered 1,n-Enynes and 1,n-Dienes 384
40.1.1.5.5.1.1 Enyne Cycloisomerization without Skeletal Reorganization 385
40.1.1.5.5.1.1.1 Method 1: Palladium-Catalyzed Cycloisomerization to Pyrrolidine Derivatives 385
40.1.1.5.5.1.1.1.1 Variation 1: Enantioselective Cycloisomerization of 1,6-Enynes Catalyzed by Chiral Bisphosphine–Palladium Complexes 388
40.1.1.5.5.1.1.2 Method 2: Rhodium-Catalyzed 1,6-Enyne Cycloisomerization to Pyrrolidine Derivatives 390
40.1.1.5.5.1.1.2.1 Variation 1: Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes to Alder-Ene-Type Products 390
40.1.1.5.5.1.1.2.2 Variation 2: Rhodium-Catalyzed Asymmetric 1,6-Enyne Cycloisomerization of Terminal Alkynes 392
40.1.1.5.5.1.1.2.3 Variation 3: Rhodium-Catalyzed Enantioselective Reductive Cyclization of 1,6-Enynes 394
40.1.1.5.5.1.1.3 Method 3: Ruthenium-Catalyzed Cycloisomerization of 1,6-Enynes 395
40.1.1.5.5.1.1.4 Method 4: Titanocene-Catalyzed Cycloisomerization of 1,6-Enynes to Pyrrolidine Derivatives 396
40.1.1.5.5.1.1.5 Method 5: Bismuth(III) Chloride Catalyzed Cycloisomerization of 1,6-Enynes 397
40.1.1.5.5.1.1.6 Method 6: Nickel-Catalyzed Reductive Cyclization of Unactivated N-Tethered 1,6-Enynes in the Presence of Organozinc Reagents 398
40.1.1.5.5.1.1.7 Method 7: Cycloisomerization of 1,6-Enynes Catalyzed by Low-Valent Iron Complexes 401
40.1.1.5.5.1.1.8 Method 8: Silver(I)-Catalyzed Cycloisomerization of 1,6-Enynes Containing Propargylic Alcohol Groups 404
40.1.1.5.5.1.1.8.1 Variation 1: Intramolecular Carbostannylation Catalyzed by Silver(I) Ions 406
40.1.1.5.5.1.1.9 Method 9: Gold(I)-Catalyzed Transformations of N-Tethered 1,6-Enynes 407
40.1.1.5.5.1.1.9.1 Variation 1: Gold(I)-Catalyzed Cycloisomerization of 1,6-Enynes to 1,4-Dienes 407
40.1.1.5.5.1.1.9.2 Variation 2: Gold(I)-Catalyzed Methoxycyclization of Enynes 408
40.1.1.5.5.1.1.9.3 Variation 3: Gold-Catalyzed Asymmetric Hydroxycyclization 409
40.1.1.5.5.1.1.9.4 Variation 4: Gold(I)-Catalyzed Tandem Cyclization/Friedel-Crafts-Type Addition 409
40.1.1.5.5.1.1.10 Method 10: Enantioselective Cycloisomerization of 1,7-Enynes to Piperidine Derivatives 410
40.1.1.5.5.1.2 Enyne Cycloisomerization with Skeletal Reorganization 412
40.1.1.5.5.1.2.1 Method 1: Gallium(III) Chloride Catalyzed Isomerization of 1,6-Enynes to Eight-Membered Rings 413
40.1.1.5.5.1.2.2 Method 2: Rhodium-Catalyzed Asymmetric Cycloisomerization of Nitrogen-Bridged 1,6-Enynes to Bicyclo[4.1.0]hept-4-ene Derivatives 414
40.1.1.5.5.1.2.3 Method 3: Gold(I)-Catalyzed Transformations of 1,6-Enynes with Skeletal Rearrangement 416
40.1.1.5.5.1.2.3.1 Variation 1: Rearrangements to Piperidine Derivatives 417
40.1.1.5.5.1.2.3.2 Variation 2: Rearrangements of N-Tethered 1,6-Enynes to 3-Azabicyclo[4.1.0]heptene Derivatives 418
40.1.1.5.5.1.2.3.3 Variation 3: Gold(I)-Catalyzed Cycloisomerizations of Amide-Tethered 1,6-Enynes 424
40.1.1.5.5.1.2.4 Method 4: Platinum-Catalyzed Cycloisomerization Reactions of Enynes 426
40.1.1.5.5.1.2.4.1 Variation 1: Application of Axially Chiral Platinum(II) Complexes 430
40.1.1.5.5.1.2.4.2 Variation 2: Platinum-Catalyzed Cycloisomerization of Chiral Enynes 431
40.1.1.5.5.2 Metathesis of N-Tethered Dienes and Enynes 433
40.1.1.5.5.2.1 Method 1: Ring-Closing Metathesis of N-Tethered 1,n-Dienes 435
40.1.1.5.5.2.1.1 Variation 1: Ring-Closing Metathesis of 1,n-Dienes in Water as Solvent 441
40.1.1.5.5.2.2 Method 2: Ring-Closing Metathesis of Chiral Dienes: Synthesis of Chiral Five- to Eight-Membered Nitrogen-Containing Heterocycles 445
40.1.1.5.5.2.2.1 Variation 1: Synthesis of Optically Active 2-Alkyl-Substituted 2,5-Dihydropyrroles 445
40.1.1.5.5.2.2.2 Variation 2: Synthesis of Optically Active Six- to Eight-Membered Nitrogen-Containing Heterocycles 445
40.1.1.5.5.2.3 Method 3: Ring-Rearrangement Metathesis 448
40.1.1.5.5.2.3.1 Variation 1: Ring-Rearrangement Metathesis of Cyclopropene Derivatives 448
40.1.1.5.5.2.3.2 Variation 2: Synthesis of (–)-Swainsonine by a Ruthenium-Catalyzed Ring-Closing/Ring-Opening Tandem Process 450
40.1.1.5.5.2.4 Method 4: Asymmetric Ring-Closing Metathesis: Synthesis of Nitrogen-Containing Heterocycles 452
40.1.1.5.5.2.4.1 Variation 1: Enantioselective Synthesis of Cyclic Amines through Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis 453
40.1.1.5.5.2.4.2 Variation 2: Enantioselective Synthesis of Cyclic Amides through Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis 455
40.1.1.5.5.2.4.3 Variation 3: Application of Asymmetric Ring-Closing Metathesis to the Enantioselective Synthesis of Quebrachamine 458
40.1.1.5.5.2.4.4 Variation 4: Microwave-Induced Ring-Closing Metathesis of Dienes 461
40.1.1.5.5.2.5 Method 5: Ring-Closing Metathesis of N-Tethered Enynes 462
40.1.1.5.5.2.5.1 Variation 1: exo-Selective Enyne Ring-Closing Metathesis Promoted by Ruthenium Carbenes: Efficient Synthesis of Chiral Five-Membered Nitrogen-Containing Heterocycles 464
40.1.1.5.5.2.5.2 Variation 2: endo-Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-Molybdenum Complexes 465
40.1.1.5.5.2.5.3 Variation 3: Enantioselective Molybdenum-Catalyzed Ring-Closing Metathesis Reactions of Dienynes 467
40.1.1.5.5.2.5.4 Variation 4: Ring-Closing Metathesis of Chiral Enynes Synthesis of Six- and Seven-Membered Chiral Nitrogen-Containing Heterocycles
40.1.1.5.5.2.6 Method 6: Tandem Enyne Ring-Closing Metathesis and Selective Hydrogenation to a Tricyclic Carbamate 469
40.1.1.5.5.2.7 Method 7: Ruthenium-Catalyzed Tandem Ring-Opening/Ring-Closing/Cross Metathesis of Cyclopropene-Containing 1,6-Enynes and Alkenes 470
40.1.1.5.5.3 Transition-Metal-Catalyzed Cycloaddition Reactions of N-Tethered 1,n-Enynes, 1,n-Diynes, and 1,n-Dienes 471
40.1.1.5.5.3.1 Method 1: Synthesis of Nitrogen-Containing Heterocycles by Pauson-Khand Reaction of Enynes 472
40.1.1.5.5.3.1.1 Variation 1: Diastereoselective Pauson–Khand Reaction of Nitrogen-Containing 1,n-Enynes and 1,n-Dienes 473
40.1.1.5.5.3.1.2 Variation 2: Asymmetric Pauson–Khand-Type Reaction Mediated by a Rhodium(I) Catalyst at Ambient Temperature 475
40.1.1.5.5.3.1.3 Variation 3: Rhodium(I)-Catalyzed Carbonylative [5 + 2 + 1] and [3 + 2 + 1] Carbocyclization: Synthesis of Fused Cyclooctenones, Cyclohexenones, and Phenol Derivatives 477
40.1.1.5.5.3.1.4 Variation 4: Rhodium-Catalyzed Pauson–Khand-Type Reaction Using an Alcohol as a Source of Carbon Monoxide 480
40.1.1.5.5.3.2 Method 2: Transition-Metal-Mediated Cycloaddition and Cyclization Reactions of 2-Methylpropane-2-sulfinamide-Tethered Enyne and Diyne Substrates 482
40.1.1.5.5.3.3 Method 3: Regio- and Enantioselective Intermolecular Rhodium-Catalyzed [2 + 2 + 2]-Cycloaddition Reactions of 1,6-Enynes 488
40.1.1.5.5.3.3.1 Variation 1: Intramolecular Rhodium-Catalyzed [2 + 2 + 2] Cyclizations of N-Tethered 1,6-Diynes with a,ß-Unsaturated Carbonyl Compounds under Microwave Irradiation 494
40.1.1.5.5.3.3.2 Variation 2: [2 + 2 + 2] Cycloaddition of 1,6-Enynes with Electron-Deficient Ketones Catalyzed by a Cationic Rhodium(I)/H8-BINAP Complex 495
40.1.1.5.5.3.3.3 Variation 3: Cyclotrimerization of N-Tethered 1,6-Diynes with Triple Bonds: Synthesis of Chiral Aromatic Compounds 497
40.1.1.5.5.3.3.4 Variation 4: Enantioselective Synthesis of Chiral Polycyclic Compounds with Quaternary Carbon Stereocenters by Catalytic Intramolecular Cycloaddition 500
40.1.1.5.5.3.3.5 Variation 5: Enantioselective Synthesis of Axially Chiral N,N-Dialkylbenzamides by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of N-Tethered Diynes with N,N-Dialkylalkynylbenzamides 503
40.1.1.5.5.3.3.6 Variation 6: Palladium-Catalyzed Tandem Reaction of N-Tethered 1,6-Diynyl Carbonates with 2,3-Dienoic Acids 504
40.1.1.5.5.3.4 Method 4: Metal-Catalyzed Intramolecular Diels–Alder Reactions of Unactivated Alkynes To Give Bi- and Polycyclic Nitrogen-Containing Heterocycles 505
40.1.1.5.5.3.4.1 Variation 1: Gold-Catalyzed [4 + 2] Cycloadditions of N-Tethered Dienallenes 509
40.1.1.5.5.3.5 Method 5: Sequential Platinum-Catalyzed Cycloisomerization and Cope Rearrangement of N-Tethered Dienynes 514
40.1.1.5.5.3.6 Method 6: Rhodium-Catalyzed Intramolecular Cyclization of Cyclopropyl-Containing N-Tethered 1,6-Dienes 516
40.1.1.5.5.4 Transition-Metal-Catalyzed Cyclization/Coupling Reactions of Unsaturated Amines and Amides 518
40.1.1.5.5.4.1 Method 1: Mizoroki–Heck Reactions of Amines and Amides 519
40.1.1.5.5.4.1.1 Variation 1: Palladium-Catalyzed Domino Coupling/Cycloisomerization of N-Tethered 1,6-Enynes 519
40.1.1.5.5.4.2 Method 2: Synthesis of Annulated Hexahydro-1H-benzo[f]isoindole Derivatives 521
40.1.1.5.5.4.3 Method 3: Synthesis of Haouamine Precursors by Cascade Mizoroki–Heck Cyclization 522
40.1.1.5.5.4.4 Method 4: Preparation of Nitrogen-Containing Spiro-Fused Dihydroindolones by Palladium-Catalyzed Tandem Mizoroki–Heck Reaction/C--H Functionalization 523
40.1.1.5.5.5 Cross-Coupling Reactions of N-Tethered 1,6-Dienes and 1,6-Enynes 526
40.1.1.5.5.5.1 Method 1: Palladium-Catalyzed Cycloalkylations of N-Tethered 2-Bromo-1,6-dienes with Organoboronic Acids 526
40.1.1.5.5.5.2 Method 2: Palladium-Catalyzed Tandem Cyclization/Suzuki Coupling of N-Tethered 1,6-Enynes To Give Mono- and Bicyclic Heterocycles 527
40.1.1.5.5.5.3 Method 3: Palladium-Mediated Cascade Cross-Coupling/Electrocyclization Approach to the Construction of Fused Bi- and Tricyclic Rings 528
Author Index 538
Abbreviations 568
List of All Volumes 574
Abstracts
2.10.18 Organometallic Complexes of Titanium
T. Takeda and A. Tsubouchi
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of organometallic complexes of titanium. ▶ Section 2.10.18.1 focuses on the preparation of titanocene alkylidenes by the reductive titanation of thioacetals, gem-dihalides, and alkyl halides, and their synthetic application in carbonyl alkenation reactions.
▶ Section 2.10.18.2 highlights the preparation of titanocene derivatives of metallacyclobutanes derived from titanocene alkylidenes and alkenes, and their synthetic application, mainly in the metathesis reaction. Other types of degradation of titanacyclobutanes such as reductive elimination and β-hydride elimination are also included. In connection with alkene metathesis, titanacyclobutenes, which are intermediates for enyne metathesis, are also discussed.
Keywords: alkenation · alkene metathesis · alkenes · alkenylcyclopropanes · carbene complexes · conjugate dienes · β-hydride elimination · reductive titanation · titanacyclobutanes · titanacyclobutenes · titanium complexes · titanocenes
4.4.2.5 Silenes (Update 1)
H. Ottosson and A. M. Rouf
The topic of this update is synthesis of silenes, compounds with Si=C bonds, which are generally highly reactive and sensitive to the ambient atmosphere. Synthetic routes published since 2001 yielding either persistent silenes or transient silenes that can be trapped by suitable reagents are discussed. Both novel routes and modifications of earlier established routes, now employing less forcing conditions than previously reported, are covered.
Keywords: silicon compounds · silenes · unsaturated compounds · lithium compounds · rearrangement · Peterson alkenation · elimination · isomerization
4.4.2.6 Silenes (Update 2)
H. Ottosson and J. Ohshita
This section describes the synthesis of silen-2-olates, silicon analogues of enolates with formal Si=C bonds, for example through trimethylsilyl–metal exchange of acylpolysilanes using organolithium or organopotassium reagents. The fundamental reactions of silenolates and the structural differences between silenolates dominated by keto-form versus enol-form resonance structures are also presented.
Keywords: silicon compounds · silenes · silenolates · silyl anions · lithium compounds · potassium compounds · mercury compounds · silyl–metal exchange
20.2.1.2.10 Synthesis from Carboxylic Acid Derivatives
A. K. Mourad and C. Czekelius
This manuscript is an update to the earlier Science of Synthesis contribution describing general methods to synthesize carboxylic acids from their derivatives. This update addresses more specific methods, new developments, and transformations of carboxylic acid derivatives which were not covered in the original contribution.
Keywords: acid catalysts · carboxylic acid derivatives · carboxylic acids · enzyme catalysis · esters · halo compounds · hydrazides · hydrolysis · oxidative cleavage · photolysis · reductive cleavage · silyl esters
20.5.1.2.8 Synthesis from Carboxylic Acids and Derivatives
A. K. Mourad and C. Czekelius
This manuscript is an update to the earlier Science of Synthesis contribution describing general methods to synthesize esters from carboxylic acids and their derivatives. This update addresses more specific methods, new developments, and transformations of carboxylic acid derivatives which were not covered in the original contribution.
Keywords: alkylations · carboxylic acid derivatives · carboxylic acids · enzyme catalysis · esters · halo compounds · hydrazides · oxidative cleavage · thioesters
27.7.6 Imines
S. Dekeukeleire, M. D’hooghe, and N. De Kimpe
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of imines. It focuses on the literature published in the period 2004–2010.
Keywords: 2H-azirines · imines · N-unsubstituted imines · N-silyl imines · N-alkyl imines · N-aryl imines · 2,3-dihydroazetes · imino esters · nitrogen heterocycles · synthesis design
27.8.2 Iminium Salts
S. Dekeukeleire, M. D’hooghe, and N. De Kimpe
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of iminium salts. It focuses on the literature published in the period 2004–2010.
Keywords: iminium salts · nitrogen heterocycles · synthesis design
39.3.9 Alkanesulfinic Acids and Acyclic Derivatives
R. Kawęcki
This chapter is an update to the earlier Science of Synthesis, Section 39.3, describing the synthesis and applications of alkanesulfinic acids and acyclic derivatives. It includes discussion of the applications of alkanesulfinyl halides and the synthesis of alkanesulfinic acid esters, alkanethiosulfinic acid esters, and alkanesulfinamides, focusing on the literature in the period 2006–2010.
It also contains an extension of the coverage of the previous contribution describing the synthesis and applications of N-alkylidenealkanesulfinamides, here focusing on literature in the period 1997–2010.
Keywords: sulfinyl halides · sulfinic acid esters · sulfinates · sulfinylation · sulfoxides · aziridines · asymmetric synthesis · boron trichloride complexes · thiosulfinic acid esters · thiosulfinates · disulfides · asymmetric oxidation · sulfinamides · N-sulfinylimines · sulfinimines · 1,2-addition · allylation · nucleophilic addition · imines
39.5.2 Alkanethiols
D. Witt
This manuscript is an update to the earlier Science of Synthesis contribution on alkanethiols, and describes applications of alkanethiols as a starting material in organic synthesis. Thiols can be converted into sulfonic, sulfinic, and sulfenic acids and their derivatives, as well as sulfides, disulfides, polysulfides, sulfonium salts, and thiiranes, etc. These transformations are accomplished by nucleophilic displacement or addition, oxidation, condensation, or coupling reactions involving the thiol group.
Keywords: alkanethiols · organosulfur compounds · sulfur electrophiles · sulfur functional groups · sulfur nucleophiles · sulfur oxidation states
39.6.1.2 Alkanethiolates of Group 1, 2, and 13–15 Metals
D. Witt
This update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkanethiolates of group 1, 2, and 13–15 metals focuses on applications of these compounds in organic synthesis. Alkanethiolates can be converted into S-alkyl thiocarboxlyates, 1-thioglycosides, S-alkyl thiosulfinates, tetrahydro-1,4-thiazin-3-ones, sulfides, disulfides, sulfonium salts, dithioacetals, and dithioketals. These transformations are accomplished by nucleophilic displacement or addition, condensation, or coupling reactions involving the thiolate group.
Keywords: alkanethiolates · S-alkyl thiocarboxylates · disulfides · dithioacetals · dithioketals · organosulfur compounds · sulfur electrophiles · sulfides · sulfonium salts · sulfur nucleophiles · thioacetals · 1-thioglycosides
39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives
T. Kimura
The topic of this section is cyclic compounds with one or more tellurium atoms, where the tellurium atom bears one sp3 carbon atom, two tellurium-heteroatom double bonds (Te=OorTe=N), and one Te-X single bond (X = O, NR1, S, etc.; R1 = H or other substituent); or one sp3 carbon atom and five single bonds: one Te-X and four Te-Z (Z = OR1, NR12,SR1, halogen, etc.; R1 = H or other substituent). Thus, this product subclass contains cyclic telluronic acid esters, cyclic telluronic acid thioesters, cyclic telluronic acid amides, and their derivatives. However, at present, no examples of such compounds have been prepared in a stable form.
Keywords: tellurium · telluronic acid esters · telluronic acid thioesters · telluronic acid amides
39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives
T. Kimura
This section describes the synthesis of cyclic compounds with one or more tellurium atoms, where a tellurium atom bridges two sp3 carbon atoms to form a cyclic structure and this tellurium atom has two...
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Reihe/Serie | Science of Synthesis |
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | 1 • 1-Dichloroalk-1-enes • Acetylene • alkanesulfinic acids • alkanetelluronic • alkanethiolates • alkanethiols • Alkene Moiety • Alkenylcarbene Complexes • Alkenyl Sulfones • Alkynyl Sulfones • amines • ammonium salts • Carbene Complex • Carbene Complex Precursors • carboxylic acid esters • carboxylic acids • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • Derivatives • Dilithiosiloles • esters • Functional Group • gem-Dichlorides • halides • Haloamines • Hydrazines • Hydrolysis • Hydroxylamines • imines • iminium salts • Ketones • Mechanism • Metathesis • Method • methods in organic synthesis • methods peptide synthesis • Monohalides • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • organometallic complexes • Peptide synthesis • photolysis • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • silenes • Silicon Compounds • Sulfones • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • Tellurolanes • Thermolysis • Thioacetals • Titanacyclobutanes • Titanacyclobutenes • Titanium • Titanium-Mediated Alkenation Reactions • Titanium-Mediated Alkene Metathesis • Titanocene Alkylidenes • Unsaturated Titanocene#Carbene Complexes • Valence Chemie |
ISBN-10 | 3-13-178751-1 / 3131787511 |
ISBN-13 | 978-3-13-178751-4 / 9783131787514 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 16,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich