Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 32 (eBook)
914 Seiten
Thieme (Verlag)
978-3-13-172081-8 (ISBN)
Science of Synthesis – Volume 32: X--Ene--X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene--Hal, and Ene--O Compounds 1
Title page 3
Imprint 5
Preface 6
Volume Editor's Preface 8
Overview 10
Table of Contents 14
Introduction 36
32.1 Product Class 1: 1,3-Bis(heteroatom-substituted) Allenes and Analogous Higher Cumulenes 48
32.1.1 Product Subclass 1: 1,3-Dihaloallenes 48
32.1.1.1 Synthesis of Product Subclass 1 48
32.1.1.1.1 Method 1: Synthesis Using Alkyllithium Reagents and Pyran-2-ones 48
32.1.2 Product Subclass 2: 1-Halo-3-(organooxy)allenes 50
32.1.3 Product Subclass 3: 1-Halo-3-(organochalcogeno)allenes 50
32.1.3.1 Synthesis of Product Subclass 3 50
32.1.3.1.1 Method 1: Synthesis Using Sulfonoselenoate Reagents and Alkynes 50
32.1.4 Product Subclass 4: 1-Nitrogen-Functionalized 3-Haloallenes 51
32.1.5 Product Subclass 5: 1-Phosphorus-Functionalized 3-Haloallenes 52
32.1.6 Product Subclass 6: 1,3-Bis(organooxy)allenes 52
32.1.7 Product Subclass 7: 1-(Organochalcogeno)-3-(organooxy)allenes 52
32.1.7.1 Synthesis of Product Subclass 7 52
32.1.7.1.1 Method 1: Synthesis Using Silyl Ketene Reagents and Alkynes 52
32.1.8 Product Subclass 8: 1-Nitrogen-Functionalized 3-(Organooxy)allenes 53
32.1.9 Product Subclass 9: 1-Phosphorus-Functionalized 3-(Organooxy)allenes 53
32.1.10 Product Subclass 10: 1,3-Bis(organochalcogeno)allenes 53
32.1.11 Product Subclass 11: 1-Nitrogen-Functionalized 3-(Organochalcogeno)allenes 54
32.1.12 Product Subclass 12: 1-Phosphorus-Functionalized 3-(Organochalcogeno)allenes 54
32.1.13 Product Subclass 13: 1,3-Bis(nitrogen-functionalized) Allenes 54
32.1.14 Product Subclass 14: 1-Nitrogen-Functionalized 3-Phosphorus-Functionalized Allenes 54
32.1.15 Product Subclass 15: 1,3-Bis(phosphorus-functionalized) Allenes 54
32.1.16 Product Subclass 16: 1.-Bis(heteroatom-functionalized) Cumulenes 55
32.2 Product Class 2: Monofunctionalized Allenes and Higher Cumulenes 58
32.2.1 Product Subclass 1: Haloallenes 58
32.2.1.1 Synthesis of Product Subclass 1 59
32.2.1.1.1 Method 1: Fluoroallenes by Fluoride Substitution with Organocuprates 59
32.2.1.1.2 Method 2: Chloroallenes by Isomerization of Propargylic Chlorides 60
32.2.1.1.2.1 Variation 1: Using a Copper(I)/Copper(0) Catalyst 60
32.2.1.1.2.2 Variation 2: Using Only a Copper(I) Catalyst 61
32.2.1.1.3 Method 3: Chloroallenes from Propargylic Alcohols and Thionyl Chloride 61
32.2.1.1.4 Method 4: Chloroallenes from Propargylic Alcohols and Hydrogen Chloride 62
32.2.1.1.5 Method 5: Flash-Vacuum Thermolysis of 1-Chlorocyclopropenes 62
32.2.1.1.6 Method 6: Chloroallenes from Benzyne and Propargyl Chloride 63
32.2.1.1.7 Method 7: Chloroallenes from Ketene Silyl Acetals 63
32.2.1.1.8 Method 8: Chloroallenes from Alkynes and Benzil 64
32.2.1.1.9 Method 9: Chloroallenes from Propargylic Alcohols and Titanium(IV) Chloride 65
32.2.1.1.10 Method 10: Bromoallenes by Alkynylogous Ring Opening of Oxiranes 66
32.2.1.1.11 Method 11: Bromoallenes by Copper-Mediated Nucleophilic Substitution of Propargylic Methanesulfonates 67
32.2.1.1.12 Method 12: Bromoallenes from Acid Chlorides 67
32.2.1.1.13 Method 13: Bromoallenes from Phosphonium Bromides 68
32.2.1.1.14 Method 14: Iodoallenes from Propargylic Alcohols 69
32.2.1.1.14.1 Variation 1: Activation of the Propargylic Alcohol by a Phosphonium Species 69
32.2.1.1.14.2 Variation 2: Using a Copper(I)/Copper(0) Catalyst 69
32.2.2 Product Subclass 2: (Organochalcogeno)allenes 70
32.2.2.1 Synthesis of Product Subclass 2 70
32.2.2.1.1 Method 1: Isomerization of Propargyl Ethers by Potassium tert-Butoxide/tert-Butyl Alcohol 70
32.2.2.1.2 Method 2: Isomerization of Propargyl Ethers by Potassium tert-Butoxide/Pentane 71
32.2.2.1.3 Method 3: Isomerization--Elimination of Propargyl Ethers by Potassium tert-Butoxide/Benzene 72
32.2.2.1.4 Method 4: Metalation of Alkoxyallenes and Addition to Aldehydes 72
32.2.2.1.5 Method 5: Alkylation of the Intermediate Obtained from Acylsilanes and Acetylides 73
32.2.2.1.6 Method 6: Wittig Alkenation of Chromium--Carbene Complexes 74
32.2.2.1.7 Method 7: Alkylation--Isomerization of Propargyl Sulfides 75
32.2.2.1.8 Method 8: Allenyl Sulfides and Selenides by the Wittig Route 76
32.2.2.1.9 Method 9: Allenyl Sulfides by a Three-Component Reaction 77
32.2.2.1.10 Method 10: Allenyl Sulfides by Palladium-Catalyzed Coupling 78
32.2.3 Product Subclass 3: Nitrogen-Functionalized Allenes 78
32.2.3.1 Synthesis of Product Subclass 3 78
32.2.3.1.1 Method 1: Allenyl Amides by Base-Catalyzed Rearrangement 78
32.2.3.1.2 Method 2: Morpholinoallenes by Conjugate Addition 79
32.2.3.1.3 Method 3: 4-Vinylideneoxazolidin-2-ones by Palladium Catalysis 80
32.2.3.1.4 Method 4: Copper-Catalyzed Coupling of Allenyl Halides with Amides, Carbamates, and Ureas 81
32.2.3.1.5 Method 5: Rhodium-Catalyzed Coupling of Propargylic Carbonates and Sulfonamides 83
32.2.4 Product Subclass 4: Phosphorus-Functionalized Allenes 84
32.2.4.1 Synthesis of Product Subclass 4 85
32.2.4.1.1 Method 1: Isomerization of Propargylphosphines under Basic Conditions 85
32.2.5 Product Subclass 5: Monofunctionalized Cumulenes 85
32.2.5.1 Synthesis of Product Subclass 5 85
32.2.5.1.1 Method 1: Wittig Route to Bromobutatrienes 85
32.2.5.1.2 Method 2: Elimination/Deprotonation/Regioselective Reprotonation 87
32.3 Product Class 3: 1,2-Bis(heteroatom-substituted) Alkenes 92
32.3.1 Product Subclass 1: 1,2-Dihaloalkenes 92
32.3.1.1 Synthesis of Product Subclass 1 93
32.3.1.1.1 Method 1: Synthesis by Oxidation of Arenes or Hetarenes 93
32.3.1.1.1.1 Variation 1: Oxidation of 3,4-Dibromo-2,5-bis(phenylsulfanyl)furan 93
32.3.1.1.1.2 Variation 2: Oxidation of Halogenated Azatriquinacenes 93
32.3.1.1.1.3 Variation 3: Oxidation of Phenols 94
32.3.1.1.1.4 Variation 4: Oxidation of Aniline 95
32.3.1.1.2 Method 2: Synthesis by Reduction 95
32.3.1.1.2.1 Variation 1: Reductive Defluorination 95
32.3.1.1.2.2 Variation 2: Reductive Dechlorination 96
32.3.1.1.2.3 Variation 3: Reductive Elimination of Mixed Halogen Atoms 97
32.3.1.1.2.4 Variation 4: Reductive Coupling 99
32.3.1.1.3 Method 3: Synthesis by Substitution 103
32.3.1.1.3.1 Variation 1: Substitution of Fluorine 103
32.3.1.1.3.2 Variation 2: Substitution of Chlorine or Bromine Atoms 104
32.3.1.1.3.3 Variation 3: Substitution of Halogens by Alkyl or Aryl Groups 114
32.3.1.1.3.4 Variation 4: Substitution of Oxygen 118
32.3.1.1.4 Method 4: Synthesis by Elimination 123
32.3.1.1.4.1 Variation 1: Dehydrofluorination 123
32.3.1.1.4.2 Variation 2: Dehydrochlorination 127
32.3.1.1.4.3 Variation 3: Dehydrobromination 129
32.3.1.1.4.4 Variation 4: Dehydroiodination 133
32.3.1.1.4.5 Variation 5: Elimination of Sulfur 134
32.3.1.1.4.6 Variation 6: Elimination with Fragmentation 135
32.3.1.1.5 Method 5: Synthesis by Addition 136
32.3.1.1.5.1 Variation 1: Addition of Methyl Hypofluorite to Allenes or Butadienes 136
32.3.1.1.5.2 Variation 2: Addition of Chlorine to Alkynes 137
32.3.1.1.5.3 Variation 3: Addition of Bromine to Alkynes 138
32.3.1.1.5.4 Variation 4: Addition of Iodine to Alkynes 142
32.3.1.1.5.5 Variation 5: Addition of Bromine Monofluoride to Alkynes 143
32.3.1.1.5.6 Variation 6: Addition of an Iodine and a Fluorine Atom to Alkynes 144
32.3.1.1.5.7 Variation 7: Addition of Halogen Chlorides or Halogen Bromides to Alkynes 147
32.3.1.1.5.8 Variation 8: Addition of Nucleophiles to vic-Dihaloquinones and Related Systems 150
32.3.1.1.5.9 Variation 9: Carbene Dimerization 152
32.3.1.1.6 Method 6: Synthesis by Cycloaddition 153
32.3.1.1.6.1 Variation 1: Synthesis by [2 + 2] Cycloaddition 153
32.3.1.1.6.2 Variation 2: Synthesis by [2 + 2 + 1] Cycloaddition 156
32.3.1.1.6.3 Variation 3: Synthesis by [3 + 2] Cycloaddition 157
32.3.1.1.6.4 Variation 4: Synthesis by [4 + 2] Cycloaddition 158
32.3.1.1.6.5 Variation 5: Synthesis by [5 + 2] Cycloaddition 167
32.3.1.1.6.6 Variation 6: Synthesis by [4 + 3] Cycloaddition 168
32.3.1.1.7 Method 7: Synthesis by Rearrangement 169
32.3.1.1.7.1 Variation 1: Migration of Fluorine 169
32.3.1.1.7.2 Variation 2: Cyclopropane Isomerization 170
32.3.1.1.7.3 Variation 3: Carbon Framework Rearrangements 172
32.3.1.1.7.4 Variation 4: Sigmatropic Rearrangement 174
32.3.1.1.7.5 Variation 5: Electrocyclic Reactions 174
32.3.1.1.7.6 Variation 6: Miscellaneous Rearrangements 176
32.3.1.1.8 Method 8: Synthesis from Alkenyl Compounds with Retention of C==C Bond Configuration 178
32.3.1.1.8.1 Variation 1: Boron Replacement 178
32.3.1.1.8.2 Variation 2: Silane Replacement 180
32.3.1.1.8.3 Variation 3: Silane Replacement with Rearrangement 181
32.3.1.1.8.4 Variation 4: Stannane Replacement 183
32.3.1.1.8.5 Variation 5: Hydroxyalkylation of (E)- or (Z)-Iodo(pentafluoropropenyl)zinc Intermediates 184
32.3.1.1.8.6 Variation 6: Zinc Displacement 185
32.3.1.1.8.7 Variation 7: Zinc/Copper Displacement 187
32.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 188
32.3.2 Product Subclass 2: 1-Halo-2-(organooxy)alkenes 204
32.3.2.1 Synthesis of Product Subclass 2 204
32.3.2.1.1 Method 1: Synthesis by Oxidation and Reduction 204
32.3.2.1.2 Method 2: Synthesis by Substitution of a Leaving Group 206
32.3.2.1.3 Method 3: Synthesis by Substitution of a Metal 208
32.3.2.1.3.1 Variation 1: Substitution of Tin 208
32.3.2.1.3.2 Variation 2: Substitution of Rhodium (via Carbenoid Intermediates) 210
32.3.2.1.4 Method 4: Synthesis by Enolate Alkylation or Acylation 215
32.3.2.1.5 Method 5: Synthesis by Elimination 215
32.3.2.1.6 Method 6: Synthesis by Addition 220
32.3.2.1.6.1 Variation 1: Intermolecular Additions to Alkynes 220
32.3.2.1.6.2 Variation 2: Addition to Alkynes/Halocyclization 221
32.3.2.1.7 Method 7: Synthesis by C--C Bond Formation 224
32.3.2.1.7.1 Variation 1: Nazarov Cyclization 224
32.3.2.1.7.2 Variation 2: Cycloadditions 226
32.3.2.1.8 Method 8: Synthesis by Rearrangement 227
32.3.2.1.9 Method 9: Synthesis with Retention of the Functional Group 228
32.3.3 Product Subclass 3: 1-Halo-2-(organochalcogeno)alkenes 236
32.3.3.1 Synthesis of Product Subclass 3 236
32.3.3.1.1 Method 1: Synthesis by Oxidation 236
32.3.3.1.1.1 Variation 1: Oxidation of Aryl Sulfides or Sulfoxides 236
32.3.3.1.1.2 Variation 2: ß-Halogenation of Vinyl Sulfides 238
32.3.3.1.2 Method 2: Synthesis by Reduction 238
32.3.3.1.3 Method 3: Synthesis by Substitution 239
32.3.3.1.3.1 Variation 1: Replacement of a Halogen 239
32.3.3.1.3.2 Variation 2: Replacement of a Metal 241
32.3.3.1.4 Method 4: Synthesis by Elimination 243
32.3.3.1.5 Method 5: Synthesis by the Addition of Halogens to Allenes 244
32.3.3.1.5.1 Variation 1: Addition to Allenyl Sulfides or Selenides 245
32.3.3.1.5.2 Variation 2: Addition to Allenyl Sulfoxides with Concomitant Reduction 248
32.3.3.1.5.3 Variation 3: Addition to Allenyl Sulfoxides 249
32.3.3.1.5.4 Variation 4: Addition to Allenesulfinic Acids and Allenyl Sulfones 252
32.3.3.1.6 Method 6: Synthesis by Addition to Alkynes 253
32.3.3.1.6.1 Variation 1: Chloroalkylation of Selanylalkynes 253
32.3.3.1.6.2 Variation 2: Addition of Sulfenyl Halides to Alkynes 254
32.3.3.1.6.3 Variation 3: Addition of Selenenyl Halides to Alkynes 258
32.3.3.1.6.4 Variation 4: Addition of Tellurium Halides to Alkynes 260
32.3.3.1.6.5 Variation 5: Addition of Sulfonyl Halides to Alkynes 261
32.3.3.1.6.6 Variation 6: Addition of Sulfur(VI) Halopentafluorides to Alkynes 262
32.3.3.1.6.7 Variation 7: Addition of Tellurium(IV) Chloride to Propargyl Alcohols 264
32.3.3.1.7 Method 7: Cycloaddition 264
32.3.3.1.8 Method 8: Synthesis by Rearrangement 265
32.3.3.1.9 Method 9: Synthesis with Retention of the Functional Group 266
32.3.4 Product Subclass 4: 1-Nitrogen-Functionalized 2-Haloalkenes 270
32.3.4.1 Synthesis of Product Subclass 4 270
32.3.4.1.1 Method 1: Synthesis by Oxidation 270
32.3.4.1.1.1 Variation 1: ß-Halogenation of Enamines 270
32.3.4.1.1.2 Variation 2:a-Halogenation of Enamino Ketones 271
32.3.4.1.1.3 Variation 3: ß-Halogenation of N-Alkenylated Amides 277
32.3.4.1.1.4 Variation 4: ß-Halogenation of N-Vinylcarbamates 280
32.3.4.1.1.5 Variation 5: Synthesis of Enamino(phenyl)iodonium Salts 283
32.3.4.1.2 Method 2: Synthesis by Reduction 283
32.3.4.1.2.1 Variation 1: Reduction of Chlorides 283
32.3.4.1.2.2 Variation 2: Reduction of Aromatic Heterocycles 284
32.3.4.1.2.3 Variation 3: Reductive Alkylation 284
32.3.4.1.3 Method 3: Synthesis by Substitution 285
32.3.4.1.3.1 Variation 1: Substitution of Fluoride 285
32.3.4.1.3.2 Variation 2: Substitution of a Chlorine Atom Bonded to C3 of a Cyclopentenone 289
32.3.4.1.3.3 Variation 3: Substitution of Chlorine or Bromine Atoms Bonded to Heterocycles 291
32.3.4.1.3.4 Variation 4: Substitution of Iodine 294
32.3.4.1.3.5 Variation 5: Substitution of Hydroxy or Alkoxy Groups 296
32.3.4.1.3.6 Variation 6: Substitution of Acyloxy Functions 298
32.3.4.1.3.7 Variation 7: Synthesis of ß-Halovinyl Azides 300
32.3.4.1.3.8 Variation 8: Substitution of Silicon or Tin 301
32.3.4.1.4 Method 4: Synthesis by Elimination 302
32.3.4.1.5 Method 5: Synthesis by Addition 304
32.3.4.1.5.1 Variation 1: Additions to Allenes 304
32.3.4.1.5.2 Variation 2: Intermolecular Additions to Alkynes 304
32.3.4.1.5.3 Variation 3: Chlorocyclization of Alkynes 306
32.3.4.1.5.4 Variation 4: Bromo- and Iodocyclization of Alkynes 307
32.3.4.1.5.5 Variation 5: Vilsmeier Reactions 310
32.3.4.1.5.6 Variation 6: Condensations of a-Halo Ketones 311
32.3.4.1.6 Method 6: Synthesis by Rearrangement 312
32.3.4.1.6.1 Variation 1: Thermolyses of Cyclopropanes 312
32.3.4.1.6.2 Variation 2: Electrocyclic Ring Opening 312
32.3.4.1.7 Method 7: Synthesis with Retention of the Functional Group 313
32.3.4.1.7.1 Variation 1: Additions to Arenes 313
32.3.4.1.7.2 Variation 2: Additions to Hetarenes 314
32.3.5 Product Subclass 5: 1-Phosphorus-Functionalized 2-Haloalkenes 324
32.3.5.1 Synthesis of Product Subclass 5 324
32.3.5.1.1 Method 1: Synthesis by Substitution 324
32.3.5.1.1.1 Variation 1: Substitution of a Halogen 324
32.3.5.1.1.2 Variation 2: Substitution of a Metal 325
32.3.5.1.2 Method 2: Synthesis by Elimination 326
32.3.5.1.3 Method 3: Synthesis by Addition 327
32.3.5.1.3.1 Variation 1: Intermolecular Additions to Alkynes 327
32.3.5.1.3.2 Variation 2: Intramolecular Additions to Allenes 328
32.3.5.1.4 Method 4: Synthesis by Condensation 331
32.3.5.1.5 Method 5: Synthesis of 2-Chlorovinyl Dichlorophosphonates and Dichlorothiophosphonates 332
32.3.6 Product Subclass 6: 1,2-Bis(organooxy)alkenes 334
32.3.6.1 Synthesis of Product Subclass 6 335
32.3.6.1.1 1,2-Dioxyethenes 335
32.3.6.1.1.1 Method 1: Dehalogenation or Dehydrohalogenation of 1,2-Dialkoxy- or 1,2-Diaryloxy-1,2-dihaloalkanes 335
32.3.6.1.1.2 Method 2: Elimination of Alcohols from Acetals or Ortho Esters 340
32.3.6.1.1.3 Method 3: Selective Reduction of 1,2-Dialkoxyacetylenes 341
32.3.6.1.1.4 Method 4: Synthesis from 2-Acetoxyvinylmercury(II) Chlorides 341
32.3.6.1.1.5 Method 5: Synthesis from Carbenes and Related Species 342
32.3.6.1.1.6 Method 6: Carbonylation and Sulfanylation of 2,3-Dimethoxybuta-1,3-diene 345
32.3.6.1.1.7 Method 7: Synthesis of Polycyclic Systems Containing a 1,2-Dialkoxyethene Component 345
32.3.6.1.2 1,3-Dioxoles 346
32.3.6.1.2.1 Method 1: Addition of Diazomethane to a,ß-Dicarbonyl Compounds 346
32.3.6.1.2.2 Method 2: Synthesis from a-Diazocarbonyl Compounds 347
32.3.6.1.2.3 Method 3: Cathodic Reduction of 1,2-Diarylethanediones in the Presence of N-Arylcarbonimidic Dichlorides 349
32.3.6.1.2.4 Method 4: Synthesis from a-Hydroxy Ketones 349
32.3.6.1.2.5 Method 5: Synthesis by the Intermediacy of Carbenes or Their Equivalents 350
32.3.6.1.2.6 Method 6: Retro-Diels--Alder Reactions 352
32.3.6.1.2.7 Method 7: Synthesis from 1,3-Dioxolanes 353
32.3.6.1.2.8 Method 8: Modification of Other 1,3-Dioxoles 355
32.3.6.1.3 2,3-Dihydro-1,4-dioxins 356
32.3.6.1.3.1 Method 1: Synthesis from a,ß-Dicarbonyl Compounds 356
32.3.6.1.3.2 Method 2: Cycloannulation 356
32.3.6.1.3.3 Method 3: Cyclization of 2-(1,3-Dioxolan-2-yl)ethanols, Bis(2-hydroxyethyl) Ethers, or 2-(Propargyloxy)ethanols 357
32.3.6.1.3.4 Method 4: Fragmentation and Concomitant Recyclization of a 2,2'-Bioxirane 358
32.3.6.1.3.5 Method 5: Synthesis from 1,4-Dioxanes 358
32.3.6.1.3.6 Method 6: Synthesis from Other 2,3-Dihydro-1,4-dioxins 360
32.3.6.2 Applications of Product Subclass 6 361
32.3.6.2.1 Method 1: Cycloaddition Reactions 361
32.3.6.2.2 Method 2: Reactions of Metal Complexes or Lithium Salts 363
32.3.6.2.3 Method 3: Addition Reactions 364
32.3.6.2.4 Method 4: Polymerization 366
32.3.7 Product Subclass 7: 1-(Organochalcogeno)-2-(organooxy)alkenes 370
32.3.7.1 Synthesis of Product Subclass 7 370
32.3.7.1.1 Method 1: Synthesis by Substitution 370
32.3.7.1.1.1 Variation 1: Substitution of Haloalkenes 370
32.3.7.1.1.2 Variation 2: Substitution of Sulfonylalkenes 371
32.3.7.1.1.3 Variation 3: Synthesis from Alkylsulfanyl Ketones (Perkow-Type Reaction) 371
32.3.7.1.1.4 Variation 4: Synthesis from Bis(dialkylsulfonium) Salts 372
32.3.7.1.2 Method 2: Synthesis by O-Sulfonylation of Acyl Sulfonium Ylides 372
32.3.7.1.3 Method 3: Synthesis by O-Acylation of a-Alkylsulfanyl Derivatives 372
32.3.7.1.3.1 Variation 1: O-Acylation of a-Sulfonium Enones 372
32.3.7.1.3.2 Variation 2: Synthesis from a-Sulfonyl Ketones 373
32.3.7.1.3.3 Variation 3: Synthesis from Dihydrothiopyranones 373
32.3.7.1.3.4 Variation 4: Synthesis from a-Oxosulfonium Aldehydes 373
32.3.7.1.4 Method 4: Synthesis by O-Phosphorylation of a-Sulfanyl Enolates 373
32.3.7.1.5 Method 5: Synthesis from a-Chloro Ketones 374
32.3.7.1.6 Method 6: Synthesis from Alkynes 374
32.3.7.1.6.1 Variation 1: Synthesis by Halotosyloxylation 374
32.3.7.1.6.2 Variation 2: Addition of Alcohols to Alkynes 375
32.3.7.1.6.3 Variation 3: Synthesis by Electrophilic Cyclization of Acetylenic Aldehydes 375
32.3.7.1.6.4 Variation 4: Synthesis from Alkynylselenonium Salts 375
32.3.7.1.6.5 Variation 5: Synthesis from Alkynyliodonium Salts 376
32.3.7.1.6.6 Variation 6: Synthesis Using Dimethyl Sulfide Ditrifluoromethanesulfonate 376
32.3.7.1.6.7 Variation 7: Synthesis by Electrophilic--Nucleophilic Addition to Triple Bonds 377
32.3.7.1.6.8 Variation 8: Synthesis by Addition of O-Sulfenyl Arenesulfonates to Alkynes 377
32.3.7.1.7 Method 7: Synthesis from Allenes 378
32.3.7.1.7.1 Variation 1: Synthesis by Nucleophilic Addition 378
32.3.7.1.7.2 Variation 2: Synthesis by Inverse-Electron-Demand Diels--Alder Reaction 378
32.3.7.1.7.3 Variation 3: Synthesis from Thioaldehydes 378
32.3.7.1.8 Method 8: Synthesis from 1,2-Thiazetidine 1,1-Dioxide 379
32.3.7.1.9 Method 9: Synthesis from 2-(Methylsulfanyl)benzoxazole 379
32.3.7.1.10 Method 10: Synthesis by Double-Bond Migration 379
32.3.7.1.11 Method 11: Synthesis by Chain Elongation 380
32.3.7.1.12 Method 12: Synthesis by Cycloaddition 380
32.3.7.1.13 Method 13: Synthesis from Methyl(dimethylamino)sulfoxonium Methylide and Acyl Chlorides 380
32.3.7.1.14 Method 14: Synthesis from Allenyl Sulfones 381
32.3.7.1.15 Method 15: Synthesis from a-Diazo Ketones 381
32.3.7.1.16 Method 16: Synthesis from a-(Dioxidosulfanylidene) Ketones 381
32.3.7.1.17 Method 17: Synthesis of 2,3-Dihydro-1,4-oxathiin 382
32.3.7.1.18 Method 18: Synthesis by Thio- and Seleno-Lactonizations of Alkynoic Acids 382
32.3.7.1.19 Method 19: Synthesis from (Phenyltellanyl)acetaldehyde Diethyl Acetal 382
32.3.8 Product Subclass 8: 1-Nitrogen-Functionalized 2-(Organooxy)alkenes 386
32.3.8.1 Synthesis of Product Subclass 8 386
32.3.8.1.1 Method 1: Synthesis by Substitution of Diazonium Salts 386
32.3.8.1.2 Method 2: Synthesis by Reduction of Arenes 386
32.3.8.1.3 Method 3: Synthesis by Amino Enolate Alkylation 386
32.3.8.1.4 Method 4: Synthesis by C--O Bond Formation 387
32.3.8.1.5 Method 5: Synthesis by Rearrangement 388
32.3.8.1.6 Method 6: Synthesis by Ring Opening of Oxazoles 388
32.3.8.1.7 Method 7: Synthesis of Oxazol-2(3H)-ones 388
32.3.8.1.7.1 Variation 1: Synthesis from a-Amino Ketones 389
32.3.8.1.7.2 Variation 2: Synthesis from a-Hydroxy Ketones 389
32.3.8.1.7.3 Variation 3: Synthesis from 2-Oxoalkyl Dialkylcarbamates 389
32.3.8.1.7.4 Variation 4: Synthesis by Intramolecular Cyclization 389
32.3.8.1.7.5 Variation 5: Synthesis by Elimination of Hydrogen Chloride 390
32.3.8.1.7.6 Variation 6: Synthesis by Elimination of Diphenylphosphine Oxide 390
32.3.8.1.7.7 Variation 7: Synthesis by Curtius Rearrangement 391
32.3.8.1.7.8 Variation 8: Synthesis from 2-(Allyloxy)oxazoles 391
32.3.8.1.8 Method 8: Synthesis from Oximes 392
32.3.8.1.9 Method 9: Synthesis by Intramolecular Cyclization 392
32.3.8.1.10 Method 10: Synthesis by Elimination 393
32.3.8.1.11 Method 11: Synthesis of 3-Hydroxypyridin-4(1H)-ones 393
32.3.8.1.12 Method 12: Synthesis from tert-Butyl Isocyanide 394
32.3.9 Product Subclass 9: 1-Phosphorus-Functionalized 2-(Organooxy)alkenes 396
32.3.9.1 Synthesis of Product Subclass 9 396
32.3.9.1.1 Method 1: Phosphorylation of Alkynyl Ethers 396
32.3.9.1.2 Method 2: Phosphorylation of Vinyl Ethers 396
32.3.9.1.3 Method 3: Synthesis by O-Alkylation of a-Oxo Ylides 396
32.3.9.1.4 Method 4: O-Phosphorylation of an a-Oxo Ylide
397
32.3.9.1.5 Method 5: Cleavage of Cyclic Phosphonium Salts 397
32.3.9.1.6 Method 6: Synthesis from Enol Ethers 397
32.3.9.1.7 Method 7: Synthesis from 1,2-Bis(triorganophosphonio)ethene Dihalides 398
32.3.9.1.8 Method 8: Synthesis from Alkynyl Ethers 398
32.3.9.1.8.1 Variation 1: Addition of Alkyl- or Aryldichlorophosphines 398
32.3.9.1.8.2 Variation 2: Addition of Trihalophosphines 398
32.3.10 Product Subclass 10: 1,2-Bis(sulfur-functionalized) Alkenes 400
32.3.10.1 Synthesis of Product Subclass 10 400
32.3.10.1.1 Method 1: Synthesis from Vinyl Sulfides 400
32.3.10.1.2 Method 2: Synthesis by Reduction 400
32.3.10.1.3 Method 3: Synthesis by Substitution of Ammonium Salts 400
32.3.10.1.4 Method 4: Synthesis by Substitution of a Halogen 401
32.3.10.1.5 Method 5: Synthesis from 3-Oxotetrahydrothiophene-2-carboxylates 401
32.3.10.1.6 Method 6: Synthesis from Cyclopropanes 402
32.3.10.1.7 Method 7: Synthesis from Cyclopropenes 402
32.3.10.1.8 Method 8: Synthesis by Elimination of Hydrogen Bromide 402
32.3.10.1.9 Method 9: Synthesis by Elimination of Water 403
32.3.10.1.10 Method 10: Synthesis by Elimination of Thiols 403
32.3.10.1.11 Method 11: Synthesis by Addition to Allenes 404
32.3.10.1.12 Method 12: Synthesis by Addition to Alkynes 405
32.3.10.1.13 Method 13: Synthesis from Alkynes and Carbon Disulfide 406
32.3.10.1.14 Method 14: Synthesis by Carbene Dimerization 407
32.3.10.1.15 Method 15: Synthesis by Double-Bond Migration 408
32.3.10.1.16 Method 16: Synthesis by Rearrangement of 1,3-Dithiolane 1-Oxides 408
32.3.10.1.17 Method 17: Synthesis by Rearrangement of 1,1-Bis(sulfonyl)ethenes 408
32.3.10.1.18 Method 18: Synthesis from Dithiins 409
32.3.10.1.19 Method 19: Synthesis with Retention of the Functional Group 412
32.3.10.1.19.1 Variation 1: S-Alkylation 412
32.3.10.1.19.2 Variation 2: Synthesis by Chain Elongation 412
32.3.10.1.19.3 Variation 3: Ring Enlargement of Dithioles 413
32.3.10.1.19.4 Variation 4: Nucleophilic Addition to Dithiolium Salts 413
32.3.11 Product Subclass 11: 1-Sulfur-Functionalized 2-(Organochalcogeno)alkenes 416
32.3.11.1 Synthesis of Product Subclass 11 416
32.3.11.1.1 Method 1: Addition to Alkynyl Sulfones 416
32.3.11.1.2 Method 2: Selenosulfonylation of Alkynes 417
32.3.11.1.3 Method 3: Synthesis of Cyclic 1-Sulfanyl-2-tellanylethenes 418
32.3.12 Product Subclass 12: 1-Sulfur-Functionalized 2-Nitrogen-Functionalized Alkenes 420
32.3.12.1 Synthesis of Product Subclass 12 420
32.3.12.1.1 Method 1: Synthesis from Enamines 420
32.3.12.1.2 Method 2: Synthesis from Vinyl Azides 422
32.3.12.1.3 Method 3: Synthesis from Imines and Derivatives 422
32.3.12.1.4 Method 4: Synthesis from ß-Oxo Sulfones and Amines 423
32.3.12.1.5 Method 5: Synthesis by Substitution from Heteroatom-Substituted Alkenes 423
32.3.12.1.6 Method 6: Synthesis from Aldehydes and Tosylmethyl Isocyanide 425
32.3.12.1.7 Method 7: Synthesis from Ylides and Thiocyanogen 426
32.3.12.1.8 Method 8: Synthesis by Elimination of Hydrogen Chloride 426
32.3.12.1.9 Method 9: Synthesis by Elimination of Ethanethiol 426
32.3.12.1.10 Method 10: Synthesis by Aminomercuration of Alkynes 427
32.3.12.1.11 Method 11: Synthesis by Addition of Aziridines to Alk-1-ynyl Sulfoxides, Allenyl Sulfoxides, or Allenyl Sulfones 427
32.3.12.1.12 Method 12: Synthesis by Ring Opening of Azirines 428
32.3.12.1.13 Method 13: Synthesis from Sulfur Ylides and Nitriles 428
32.3.12.1.14 Method 14: Synthesis by Cycloaddition of a-Imino Thiones 429
32.3.12.1.15 Method 15: Synthesis by Rearrangement of Thietanes 429
32.3.12.1.16 Method 16: Synthesis by S-Oxidation 429
32.3.12.1.17 Method 17: Synthesis from Thiazolium Salts and Nucleophiles or Electrophiles 430
32.3.12.1.18 Method 18: Synthesis from Thiazines 431
32.3.12.1.19 Method 19: Synthesis by C-Imidoylation of Sulfoxides 431
32.3.13 Product Subclass 13: 1-Sulfur-Functionalized 2-Phosphorus-Functionalized Alkenes 434
32.3.13.1 Synthesis of Product Subclass 13 434
32.3.13.1.1 Method 1: Synthesis by Substitution 434
32.3.13.1.1.1 Variation 1: Of Chloroalkenes 434
32.3.13.1.1.2 Variation 2: Of Vinyl Sulfones 434
32.3.13.1.1.3 Variation 3: Of Vinylphosphonium Salts 434
32.3.13.1.2 Method 2: Synthesis by Elimination 435
32.3.13.1.3 Method 3: Synthesis by Addition to Alkynes, Alkenes, or Allenes 435
32.3.13.1.4 Method 4: Synthesis by Cycloaddition 436
32.3.13.1.5 Method 5: Synthesis by Isomerization 437
32.3.13.1.6 Methods 6: Other Methods 437
32.3.14 Product Subclass 14: 1,2-Bis(nitrogen-functionalized) Alkenes 440
32.3.14.1 Synthesis of Product Subclass 14 440
32.3.14.1.1 Method 1: Synthesis of 1,2-Dinitroalkenes 440
32.3.14.1.2 Method 2: Synthesis of 1-Amino-2-nitroalkenes 440
32.3.14.1.2.1 Variation 1: Synthesis from Ortho Esters and Nitroalkanes 440
32.3.14.1.2.2 Variation 2: Synthesis from Imines 441
32.3.14.1.2.3 Variation 3: Synthesis from Carboxylic Acid Derivatives 441
32.3.14.1.2.4 Variation 4: Synthesis from 4-Nitrocyclobut-1-en-1-amines 442
32.3.14.1.2.5 Variation 5: Synthesis from Haloalkenes 442
32.3.14.1.2.6 Variation 6: Synthesis by Rearrangement 442
32.3.14.1.3 Method 3: Synthesis of 4-Nitro-1,2-dihydro-3H-pyrazol-3-ones 443
32.3.14.1.4 Method 4: Synthesis of 1,2-Bis(diazenyl)alkenes 443
32.3.14.1.5 Method 5: Synthesis of 1-Amino-2-diazenylalkenes 444
32.3.14.1.6 Method 6: Synthesis of Alkene-1,2-diamines 444
32.3.14.1.6.1 Variation 1: Synthesis from 1-Alkoxymethanediamines 444
32.3.14.1.6.2 Variation 2: Synthesis by Amine Elimination 445
32.3.14.1.6.3 Variation 3: Synthesis from a-Halo or a-Dialkylamino Aldehydes 445
32.3.14.1.6.4 Variation 4: Synthesis from 1-Amino-2-haloalkenes 445
32.3.14.1.6.5 Variation 5: Synthesis from 1,2-Diols 446
32.3.14.1.6.6 Variation 6: Synthesis from Cyclopropenium Ion Derivatives 446
32.3.14.1.7 Method 7: Synthesis of Dihydroimidazoles 447
32.3.14.1.8 Method 8: Synthesis of 1,4-Dihydropyrazines 449
32.3.14.1.9 Method 9: Synthesis of Tetrahydropyrazines 449
32.3.14.1.10 Method 10: Synthesis of 4,5,6,7-Tetrahydro-1H-1,4-diazepines 451
32.3.14.1.11 Method 11: Synthesis of 1,2,4-Triazines 451
32.3.14.1.12 Method 12: Synthesis of 1,2-Diazidoalkenes 452
32.3.15 Product Subclass 15: 1-Nitrogen-Functionalized 2-Phosphorus-Functionalized Alkenes 456
32.3.15.1 Synthesis of Product Subclass 15 456
32.3.15.1.1 Method 1: Synthesis by Substitution 456
32.3.15.1.1.1 Variation 1: Substitution of Chloroalkenes 456
32.3.15.1.1.2 Variation 2: Substitution of Bromoalkenes 456
32.3.15.1.1.3 Variation 3: Substitution of Alkylphosphonium Salts 456
32.3.15.1.2 Method 2: Synthesis from Phosphorus Ylides 456
32.3.15.1.3 Method 3: Condensation of ß-Oxo Phosphonium Salts with Amines 457
32.3.15.1.4 Method 4: Synthesis by Addition to Phosphorus-Functionalized Alkynes 457
32.3.15.1.5 Method 5: Synthesis of 1-(Isothiocyanato/isocyanato)-2-(difluorophosphoryl)alkenes 459
32.3.16 Product Subclass 16: 1,2-Bis(phosphorus-functionalized) Alkenes 462
32.3.16.1 Synthesis of Product Subclass 16 462
32.3.16.1.1 Method 1: Substitution of Chloroalkenes 462
32.3.16.1.2 Method 2: Synthesis from Acyl Halides 462
32.3.16.1.3 Method 3: Addition to Alkynes 462
32.3.16.1.4 Method 4: Synthesis from 2,3-Dihydro-1H-1,3,2-diphosphasiloles 464
32.4 Product Class 4: Haloalkenes 466
32.4.1 Product Subclass 1: Fluoroalkenes 466
32.4.1.1 Synthesis of Product Subclass 1 467
32.4.1.1.1 Synthesis from Organometallic Compounds 467
32.4.1.1.1.1 Method 1: Synthesis from Vinylstannanes 468
32.4.1.1.1.1.1 Variation 1: Fluorodestannylation with Xenon Difluoride 468
32.4.1.1.1.1.2 Variation 2: Fluorodestannylation with Cesium Fluoroxysulfate 470
32.4.1.1.1.1.3 Variation 3: Fluorodestannylation with Selectfluor 470
32.4.1.1.1.2 Method 2: Synthesis from Vinylborates 470
32.4.1.1.1.3 Method 3: Synthesis from Vinyllithiums 471
32.4.1.1.2 Synthesis from Alkanes 471
32.4.1.1.2.1 Method 1: Dehydrohalogenation 472
32.4.1.1.2.1.1 Variation 1: Dehydrofluorination 472
32.4.1.1.2.1.2 Variation 2: Dehydrohalogenation 474
32.4.1.1.2.2 Method 2: Reductive Dehalogenation Using Reducing Metals or Hydrogen 474
32.4.1.1.2.3 Method 3: Dehalogenation with Phosphites and Phosphines 477
32.4.1.1.2.4 Method 4: Thermal syn Elimination 477
32.4.1.1.3 Synthesis from Alkenes 478
32.4.1.1.3.1 Method 1: Addition/Elimination Reactions 478
32.4.1.1.3.1.1 Variation 1: Using N-Fluorobis(trifluoromethane)sulfonimide 478
32.4.1.1.3.1.2 Variation 2: Using Trifluoromethyl Hypofluorite 478
32.4.1.1.3.1.3 Variation 3: Using Acetyl Hypofluoride 479
32.4.1.1.3.2 Method 2: Dihalocarbene Addition and Subsequent Ring Opening 479
32.4.1.1.3.2.1 Variation 1: Formation of a-Fluoro a,ß-Unsaturated Carbonyl Compounds or Acetals
479
32.4.1.1.3.2.2 Variation 2: Formation of Simple Fluoroalkenes 480
32.4.1.1.3.2.3 Variation 3: Formation of Conjugated Fluorodienes 481
32.4.1.1.4 Synthesis from Aldehydes and Ketones 482
32.4.1.1.4.1 Method 1: Alkenation Reactions 482
32.4.1.1.4.1.1 Variation 1: Wittig Alkenation 482
32.4.1.1.4.1.2 Variation 2: Horner--Wadsworth--Emmons Alkenation 483
32.4.1.1.4.1.3 Variation 3: Julia Alkenation 484
32.4.1.1.4.1.4 Variation 4: Miscellaneous Alkenations 485
32.4.1.1.4.2 Method 2: Substitution of Oxygen in Carbonyl Compounds 485
32.4.1.1.5 Synthesis from Carboxylic Acids and Their Derivatives 485
32.4.1.1.5.1 Method 1: Wittig Alkenation 486
32.4.1.1.5.2 Method 2: Horner--Wadsworth--Emmons Alkenation 486
32.4.1.1.6 Synthesis from Alkynes and Allenes 487
32.4.1.1.6.1 Method 1: Addition of Hydrogen Fluoride to Alkynes 487
32.4.1.1.6.2 Method 2: Addition of Halogen Fluorides to Alkynes 488
32.4.1.1.6.3 Method 3: Formal Addition of Benzenesulfenyl Fluoride to Alkynes 489
32.4.1.1.6.4 Method 4: Formal Addition of Benzeneselenenyl Fluoride to Alkynes 489
32.4.1.1.6.5 Method 5: Addition to Allenes 490
32.4.1.1.7 Modifications of Compounds Already Containing a Fluorovinyl Substituent 490
32.4.1.1.7.1 Method 1: Cross-Coupling Reactions 491
32.4.1.1.7.1.1 Variation 1: Suzuki--Miyaura Cross Coupling 491
32.4.1.1.7.1.2 Variation 2: Stille Cross Coupling 491
32.4.1.1.7.1.3 Variation 3: Negishi Cross Coupling 493
32.4.1.1.7.1.4 Variation 4: Sonogashira Cross Coupling 494
32.4.1.1.7.2 Method 2: Functional-Group Exchange 494
32.4.1.1.7.2.1 Variation 1: Dehalogenation 494
32.4.1.1.7.2.2 Variation 2: Hydrodefluorination with Trialkylphosphines 495
32.4.1.1.7.2.3 Variation 3: Iododefluorination with Trialkylphosphines 495
32.4.1.1.7.2.4 Variation 4: Hydrodestannylation 495
32.4.1.1.7.3 Method 3: Allylic Substitution with N,N-Diethylaminosulfur Trifluoride 496
32.4.1.1.7.4 Method 4: Isomerization 496
32.4.1.1.7.5 Method 5: Rearrangement 496
32.4.2 Product Subclass 2: Chloro-, Bromo-, and Iodoalkenes 497
32.4.2.1 Synthesis of Product Subclass 2 498
32.4.2.1.1 Synthesis from Organometallic Compounds 498
32.4.2.1.1.1 Method 1: Synthesis from Vinylstannanes 499
32.4.2.1.1.2 Method 2: Stepwise Replacement of Zirconium or Tin 502
32.4.2.1.1.3 Method 3: Synthesis from Vinylsilanes 503
32.4.2.1.1.4 Method 4: Synthesis from Vinylaluminum Compounds 505
32.4.2.1.1.5 Method 5: Synthesis from Vinylborates 506
32.4.2.1.1.6 Method 6: Synthesis from Vinylzirconium Compounds 508
32.4.2.1.1.7 Method 7: Synthesis from Vinylmagnesium Compounds 509
32.4.2.1.2 Synthesis from Alkanes 510
32.4.2.1.2.1 Method 1: Dehydrohalogenation 510
32.4.2.1.2.1.1 Variation 1: Under Basic Conditions 510
32.4.2.1.2.1.2 Variation 2: Under Thermal Conditions 512
32.4.2.1.2.2 Method 2: Electroreduction 512
32.4.2.1.2.3 Method 3: Dehalogenation with Reducing Metals 513
32.4.2.1.2.4 Method 4: Dehalogenation with Phosphites and Phosphines 514
32.4.2.1.2.5 Method 5: Thermal syn Elimination 514
32.4.2.1.3 Synthesis from Alkenes 515
32.4.2.1.3.1 Method 1: C-Halogenation 515
32.4.2.1.3.2 Method 2: Dihalocarbene Addition and Subsequent Ring Opening 515
32.4.2.1.3.2.1 Variation 1: Formation of Haloalkenes 515
32.4.2.1.3.2.2 Variation 2: Formation of a-Halo a,ß-Unsaturated Carbonyl Compounds 516
32.4.2.1.3.2.3 Variation 3: Formation of Conjugated Halodienes 517
32.4.2.1.4 Synthesis from Halocarbenes 517
32.4.2.1.5 Synthesis from Aldehydes and Ketones 518
32.4.2.1.5.1 Method 1: Wittig Alkenation 518
32.4.2.1.5.1.1 Variation 1: Formation of Chloroalkenes 518
32.4.2.1.5.1.2 Variation 2: Formation of Bromoalkenes 518
32.4.2.1.5.1.3 Variation 3: Formation of Iodoalkenes 520
32.4.2.1.5.1.4 Variation 4: Formation of a-Halo a,ß-Unsaturated Esters 521
32.4.2.1.5.2 Method 2: Horner--Wadsworth--Emmons Alkenation 521
32.4.2.1.5.3 Method 3: Takai Alkenation 523
32.4.2.1.5.4 Method 4: Halo-Julia Alkenation 525
32.4.2.1.5.5 Method 5: Chromium(II)- and Iron(0)-Mediated Alkenation 525
32.4.2.1.5.6 Method 6: Morita--Baylis--Hillmann Addition 526
32.4.2.1.5.7 Method 7: Vilsmeier Haloformylation 526
32.4.2.1.5.8 Method 8: Substitution of Oxygen in Carbonyl Compounds 527
32.4.2.1.5.8.1 Variation 1: Using Phosphorus Pentachloride 527
32.4.2.1.5.8.2 Variation 2: Via Vinyl Trifluoromethanesulfonates 527
32.4.2.1.5.8.3 Variation 3: Via Vinyl Phosphates 528
32.4.2.1.5.8.4 Variation 4: Reaction of Enolizable Aldehydes with 2-Chlorobenzoxazolium Salts 528
32.4.2.1.5.9 Method 9: Allylborination 529
32.4.2.1.6 Synthesis from Carboxylic Acids and Derivatives 529
32.4.2.1.6.1 Method 1: The Hunsdiecker Reaction 529
32.4.2.1.6.2 Method 2: Wittig Alkenation 530
32.4.2.1.7 Synthesis from Alkynes and Allenes 530
32.4.2.1.7.1 Method 1: Hydrohalogenation of Alkynes 531
32.4.2.1.7.1.1 Variation 1: Addition of Halogen Acids 531
32.4.2.1.7.1.2 Variation 2: Hydrohalogenation with Alkali Metal Halides 531
32.4.2.1.7.2 Method 2: Halogenation of Alkynes 533
32.4.2.1.7.3 Method 3: Addition of a Halogen and a Heteroatom 535
32.4.2.1.7.3.1 Variation 1: Addition of Halogen and Nitrogen 535
32.4.2.1.7.3.2 Variation 2: Addition of Halogen and Oxygen 535
32.4.2.1.7.3.3 Variation 3: Addition of Halogen and Sulfur or Selenium 536
32.4.2.1.7.4 Method 4: Transformations of Haloalkynes 536
32.4.2.1.7.4.1 Variation 1: Using Boranes 536
32.4.2.1.7.4.2 Variation 2: Using Lithium Aluminum Hydride 537
32.4.2.1.7.4.3 Variation 3: Using Diimides 537
32.4.2.1.7.5 Method 5: Alkene--Alkyne Coupling 537
32.4.2.1.7.6 Method 6: Iodocyclization of Alkynes 539
32.4.2.1.7.7 Method 7: Hydrohalogenation of Allenes 539
32.4.2.1.7.8 Method 8: Halogenation of Allenes 540
32.4.2.1.7.9 Method 9: Addition of Halogen and Oxygen to Allenes 540
32.4.2.1.7.9.1 Variation 1: Halohydroxylation 540
32.4.2.1.7.9.2 Variation 2: Haloacetylation 541
32.4.2.1.7.10 Method 10: SN2' Reactions of Allenols
541
32.4.2.1.8 Modification of Compounds Already Containing a Halogenated Alkenyl Function 542
32.4.2.1.8.1 Method 1: Cross-Coupling Reactions 542
32.4.2.1.8.1.1 Variation 1: Suzuki--Miyaura Cross Coupling 542
32.4.2.1.8.1.2 Variation 2: Stille Cross Coupling 544
32.4.2.1.8.1.3 Variation 3: Negishi Cross Coupling 546
32.4.2.1.8.1.4 Variation 4: Sonogashira Cross Coupling 547
32.4.2.1.8.1.5 Variation 5: Kumada Cross Coupling 547
32.4.2.1.8.2 Method 2: Carbonyl Addition of Vinyllithium Reagents 548
32.4.2.1.8.3 Method 3: Substitution of Halogens by Other Nucleophiles 549
32.4.2.1.8.4 Method 4: Halodemetalation 550
32.4.2.1.8.4.1 Variation 1: Halodestannylation or Halodeboration 550
32.4.2.1.8.5 Method 5: Dehalogenation 551
32.4.2.1.8.5.1 Variation 1: Using Lithium Aluminum Hydride 551
32.4.2.1.8.5.2 Variation 2: Using Reducing Metals 551
32.4.2.1.8.5.3 Variation 3: Via Stannanes 552
32.4.2.1.8.5.4 Variation 4: Using Organolithiums 552
32.4.2.1.8.5.5 Variation 5: Using Diethyl Phosphonates 553
32.4.2.1.8.6 Method 6: Ring Opening of 1,2-Dihalocyclopropenes 553
32.5 Product Class 5: (Organooxy)alkenes 568
32.5.1 Product Subclass 1: Enols 568
32.5.1.1 Synthesis of Product Subclass 1 570
32.5.1.1.1 Method 1: Equilibration from the Corresponding Carbonyl Form 570
32.5.1.1.2 Method 2: Transition-Metal-Catalyzed Isomerization of Allylic Alcohols 571
32.5.1.1.3 Method 3: Photochemical Cleavage 571
32.5.1.1.4 Method 4: Mild Hydrolysis of Enol Ketene Acetals or Enol Ortho Esters 571
32.5.1.1.5 Method 5: Sigmatropic Rearrangements 572
32.5.1.2 Applications of Product Subclass 1 in Organic Synthesis 572
32.5.1.2.1 Method 1: Deprotonation and Subsequent Reaction as an Enolate 572
32.5.1.2.2 Method 2: O-Alkylation and O-Silylation under Neutral Conditions 573
32.5.1.2.3 Method 3: Hydrogenation 574
32.5.1.2.4 Method 4: Reaction with Carbon Electrophiles under Neutral or Acidic Conditions 575
32.5.1.2.5 Method 5: Reaction with Nitrogen Electrophiles 576
32.5.1.2.6 Method 6: Reaction with Oxygen Electrophiles 576
32.5.1.2.7 Method 7: Reaction with Sulfur and Selenium Electrophiles 577
32.5.1.2.8 Method 8: Reaction with Electrophilic Halide Reagents 578
32.5.1.2.9 Method 9: Photochemical Cycloadditions 578
32.5.1.2.10 Method 10: Oxidative Cyclizations 579
32.5.2 Product Subclass 2: Enolates 582
32.5.2.1 Synthesis of Product Subclass 2 583
32.5.2.1.1 Method 1: Synthesis by Deprotonation 584
32.5.2.1.1.1 Variation 1: Kinetic Deprotonation of a Ketone 584
32.5.2.1.1.2 Variation 2: Deprotonation under Thermodynamic Conditions 586
32.5.2.1.1.3 Variation 3: Double Deprotonation of a 1,4-Dicarbonyl Compound 587
32.5.2.1.1.4 Variation 4: Enantioselective Deprotonation of Symmetrical Ketones 588
32.5.2.1.1.5 Variation 5: Deprotonation with Organozinc Compounds 589
32.5.2.1.2 Method 2: Synthesis by Cleavage of Enol Esters and Ethers 590
32.5.2.1.2.1 Variation 1: Cleavage of Enol Esters 591
32.5.2.1.2.2 Variation 2: Cleavage of Enol Ethers 591
32.5.2.1.2.3 Variation 3: Cleavage of Silyl Enol Ethers 591
32.5.2.1.3 Method 3: Synthesis by Reduction of a-Halocarbonyl and Related Compounds
592
32.5.2.1.4 Method 4: Synthesis by Conjugate Reduction 593
32.5.2.1.5 Method 5: Synthesis by Conjugate Addition 595
32.5.2.1.6 Method 6: Synthesis by Nucleophilic Addition to Ketenes 596
32.5.2.1.7 Method 7: Synthesis by Base-Induced Rearrangement of Epoxides 597
32.5.2.1.8 Method 8: Synthesis by Anionic Oxy-Cope Rearrangement 598
32.5.2.1.9 Method 9: Synthesis by Rearrangement of Allylic Alkoxides 600
32.5.2.2 Applications of Product Subclass 2 in Organic Synthesis 600
32.5.2.2.1 Method 1: Transmetalation To Form Transition Metal Enolates and Zinc Enolates 601
32.5.2.2.1.1 Variation 1: Transmetalation with Organotitanium or Organozirconium Complexes 601
32.5.2.2.1.2 Variation 2: Transmetalation with Nickel(II) or Palladium(II) Complexes 602
32.5.2.2.1.3 Variation 3: Transmetalation with Magnesium, Titanium, Manganese, or Zinc Salts 604
32.5.2.2.2 Method 2: Formation of Boron Enolates 604
32.5.2.2.3 Method 3: O-Alkylation and O-Acylation To Form Enol Ethers and Enol Esters 605
32.5.2.2.4 Method 4: Formation of Silyl Enol Ethers and Tin Enolates 606
32.5.2.2.5 Method 5: Reaction with S-Electrophiles: Formation of Enol Trifluoromethanesulfonates 607
32.5.2.2.6 Method 6: Protonation and Deuteration of Enolates 608
32.5.2.2.7 Method 7: Reaction on the C-Terminus with C-Electrophiles 610
32.5.2.2.7.1 Variation 1: Alkylation 610
32.5.2.2.7.2 Variation 2: Aldol Addition 612
32.5.2.2.7.3 Variation 3: Acylation (Claisen Condensation) 614
32.5.2.2.8 Method 8: Reaction of Enolates on the C-Terminus with Electrophilic Heteroatom Species 615
32.5.2.2.8.1 Variation 1: Reaction with Electrophilic Nitrogen Species 615
32.5.2.2.8.2 Variation 2: Reaction with Electrophilic Oxygen Species 616
32.5.2.2.8.3 Variation 3: Reaction with Electrophilic Sulfur and Selenium Species 617
32.5.2.2.8.4 Variation 4: Reaction with Electrophilic Halogen Species 618
32.5.2.2.9 Method 9: Oxidative Dimerization of Enolates and Related Oxidative Couplings 619
32.5.3 Product Subclass 3: Enol Ethers 624
32.5.3.1 Synthesis of Product Subclass 3 625
32.5.3.1.1 Formation of an O--R1 Bond (Alkylation of the Oxygen Atom) 625
32.5.3.1.1.1 Method 1: Alkylation of Carbonyl Compounds 625
32.5.3.1.1.1.1 Variation 1: Reactions of Enolates with Alkylating Agents 626
32.5.3.1.1.1.2 Variation 2: Reactions of Enolates with Diazoalkanes 627
32.5.3.1.1.1.3 Variation 3: Reaction of Ketones with Ethyl Diazoacetate 627
32.5.3.1.1.2 Method 2: Alkylation of Silyl Ethers 628
32.5.3.1.2 Formation of the a-C--O Bond 629
32.5.3.1.2.1 Method 1: Reaction of Vinyl Halides or Activated Vinyl Derivatives with Alcohols or Phenols 630
32.5.3.1.2.1.1 Variation 1: Nucleophilic Displacement 630
32.5.3.1.2.1.2 Variation 2: Copper-Catalyzed C--O Bond-Forming Reactions 633
32.5.3.1.2.1.3 Variation 3: Palladium-Catalyzed C--O Bond-Forming Reactions 637
32.5.3.1.2.1.4 Variation 4: Reaction of Perfluorovinyl Fluorides with Alcohols or Phenols 639
32.5.3.1.2.2 Method 2: Addition to Alkynes 640
32.5.3.1.2.2.1 Variation 1: Addition of Alcohols to Alkynes 640
32.5.3.1.2.2.2 Variation 2: cis Addition of Alcohols to Alkynones and Alkynoic Acid Derivatives 642
32.5.3.1.2.2.3 Variation 3: trans Addition of Alcohols to Alkynones and Alkynoic Acid Derivatives 643
32.5.3.1.2.2.4 Variation 4: Addition of Carbonyl Compounds to Alkynones and Alkynoic Acid Derivatives 645
32.5.3.1.2.2.5 Variation 5: Addition to Alkynes with Formation of Cyclic Enol Ethers 647
32.5.3.1.2.3 Method 3: Addition to Allenes or Methylenecyclopropanes 648
32.5.3.1.2.3.1 Variation 1: Addition to Sulfonyl-Stabilized Allenes 649
32.5.3.1.2.3.2 Variation 2: Reactions Involving Phosphorus-Based Anion-Stabilizing Groups 650
32.5.3.1.2.3.3 Variation 3: Photochemically Induced Reactions of Allenes Involving the Addition of an Alcohol 652
32.5.3.1.2.3.4 Variation 4: Palladium-Catalyzed Cascade Reaction of 4-(Alkoxycarbonyloxy)but-2-yn-1-ols with Phenols 653
32.5.3.1.2.3.5 Variation 5: Addition of Methanol to a Methylenecyclopropane System 654
32.5.3.1.2.4 Method 4: Alkoxide-Mediated Ring-Opening Reactions 655
32.5.3.1.2.4.1 Variation 1: Ring Opening of 1-Phenylthiophenium Salts 655
32.5.3.1.2.4.2 Variation 2: Ring Opening of Isothiazole 1,1-Dioxides 656
32.5.3.1.2.5 Method 5: Transetherification of Vinyl Ethers 657
32.5.3.1.2.5.1 Variation 1: Catalysis with Mercury(II) Salts 657
32.5.3.1.2.5.2 Variation 2: Catalysis with Palladium Compounds 660
32.5.3.1.2.6 Method 6: Transfer of a Vinyl Group from a Vinyl Ester 665
32.5.3.1.3 Substitution at the a-Carbon Atom 666
32.5.3.1.3.1 Method 1: The Heck Reaction 666
32.5.3.1.3.2 Method 2: Transition-Metal-Mediated Cross-Coupling Reactions 670
32.5.3.1.3.2.1 Variation 1: The Stille Reaction 670
32.5.3.1.3.2.2 Variation 2: Suzuki and Negishi Coupling Reactions 673
32.5.3.1.3.2.3 Variation 3: Sonogashira Coupling 678
32.5.3.1.3.3 Method 3: Treatment of a-Metalated Vinyl Ethers with Electrophiles 679
32.5.3.1.3.4 Methods 4: Other Methods 682
32.5.3.1.4 Formation of the C==C Bond by Condensation Reactions 683
32.5.3.1.4.1 Method 1: Condensation of Aldehydes, Ketones, or Ortho Esters with Acidic Methylene Derivatives 683
32.5.3.1.4.1.1 Variation 1: Condensation Reactions of Aldehydes or Ketones with Acidic Methylene Derivatives 683
32.5.3.1.4.1.2 Variation 2: Condensation Reactions of Esters or Ortho Esters with Acidic Methylene Derivatives 684
32.5.3.1.4.1.3 Variation 3: Condensation Reactions of Silyl Ethers with Acidic Methylene Derivatives (Peterson Alkenation) 687
32.5.3.1.4.2 Method 2: Condensation of Carbonyl Compounds with Organophosphorus Reagents 688
32.5.3.1.4.2.1 Variation 1: Condensation of Esters with Organophosphorus Reagents (Wittig-like Reaction) 689
32.5.3.1.4.2.2 Variation 2: Condensation of Aldehydes or Ketones with Organophosphorus Reagents (Wittig Reaction) 692
32.5.3.1.4.2.3 Variation 3: Modifications of the Wittig Reaction 693
32.5.3.1.4.3 Method 3: Reductive Coupling of Ketones with Esters in the Presence of Titanium Complexes (The McMurry Coupling) 696
32.5.3.1.4.4 Method 4: Alkylidenation of Esters with Alkylidene Complexes of Titanium 696
32.5.3.1.4.4.1 Variation 1: With Tebbe's Reagent 696
32.5.3.1.4.4.2 Variation 2: With the Petasis Reagent 700
32.5.3.1.4.4.3 Variation 3: With the Takeda Reagents 705
32.5.3.1.4.4.4 Variation 4: With the Takai Reagent 712
32.5.3.1.4.4.5 Variation 5: With the Grubbs Reagents 714
32.5.3.1.4.5 Method 5: Reaction of Fischer Carbene Complexes with Acetylenes 718
32.5.3.1.5 Formation of the C==C Bond through Elimination 722
32.5.3.1.5.1 Method 1: Elimination of Alcohols from Acetals 722
32.5.3.1.5.1.1 Variation 1: Acid-Catalyzed Eliminations 722
32.5.3.1.5.1.2 Variation 2: Eliminations Using Combinations of Bases and Silyl Halides or Silyl Trifluoromethanesulfonates 723
32.5.3.1.5.1.3 Variation 3: Base-Catalyzed Elimination Reactions 728
32.5.3.1.5.1.4 Variation 4: Titanium(IV) Chloride Promoted Formation of Enol Ethers 729
32.5.3.1.5.1.5 Variations 5: Miscellaneous Alcohol Elimination Reactions 730
32.5.3.1.5.2 Method 2: Elimination of Hydrogen Halides from Halo Ethers 731
32.5.3.1.5.3 Method 3: Elimination Reactions of Sulfoxides, Sulfones, or Selenoxides 735
32.5.3.1.5.4 Method 4: Dehydration of a-Alkoxy ß-Hydroxy Esters 737
32.5.3.1.5.5 Method 5: Elimination of Nitrogen from 3-Alkoxydihydropyrazoles 738
32.5.3.1.5.6 Methods 6: Miscellaneous Elimination Reactions 739
32.5.3.1.6 Formation of the C==C Bond through Isomerization 740
32.5.3.1.6.1 Method 1: Base-Induced Isomerization 740
32.5.3.1.6.2 Method 2: Isomerizations Involving Metalated Carbanionic Intermediates 741
32.5.3.1.6.3 Method 3: Metal-Complex-Catalyzed Isomerizations 742
32.5.3.1.6.3.1 Variation 1: Using Rhodium and Palladium Complexes 742
32.5.3.1.6.3.2 Variation 2: Using Iron Complexes 743
32.5.3.1.6.4 Method 4: Ring-Closing Metathesis Followed by Isomerization 744
32.5.3.1.6.4.1 Variation 1: Activation of the Ring-Closing-Metathesis Catalyst by Hydrogen 744
32.5.3.1.6.4.2 Variation 2: Activation of the Ring-Closing-Metathesis Catalyst by Addition of Inorganic Hydrides 745
32.5.3.1.6.4.3 Variation 3: Activation of the Ring-Closing-Metathesis Catalyst by Addition of Ethyl Vinyl Ether 746
32.5.3.1.6.5 Method 5: Oxidative Isomerizations 747
32.5.3.1.7 Formation of the C==C Bond by Reduction 748
32.5.3.1.7.1 Method 1: Partial Reduction of Phenyl Ethers 748
32.5.3.1.7.2 Method 2: Reduction of Alkynyl Ethers 748
32.5.3.1.8 Substitution of the ß-Carbon 752
32.5.3.1.8.1 Method 1: Palladium-Catalyzed Coupling Reactions 752
32.5.3.1.8.1.1 Variation 1: Heck Arylations 752
32.5.3.1.8.1.2 Variation 2: Stille Coupling Reactions 756
32.5.3.1.8.1.3 Variation 3: Suzuki and Negishi Couplings 756
32.5.3.1.8.1.4 Variation 4: Sonogashira Couplings 759
32.5.3.1.8.1.5 Variation 5: Nazarov Reaction 760
32.5.3.1.8.2 Method 2: Ruthenium-Catalyzed Cross-Enyne Metathesis 763
32.5.3.1.8.3 Method 3: Trifluoroacetylation of Vinyl Ethers 764
32.5.3.1.8.4 Method 4: Friedel--Crafts Reaction of Enol Ethers 764
32.5.3.1.8.5 Method 5: Reaction of ß-Alkenyllithiums with Aldehydes 765
32.5.3.1.9 Rearrangements Leading to Enol Ethers 766
32.5.3.1.9.1 Method 1: [3,3]-Sigmatropic Rearrangements 766
32.5.3.1.9.2 Method 2: Ring-Opening Reactions 766
32.5.3.1.9.3 Method 3: Ring-Expansion Reactions 768
32.5.3.1.10 Concerted Formation of More Than One Bond 770
32.5.3.1.10.1 Method 1: Intermolecular Hetero-Diels--Alder Reactions 770
32.5.3.1.10.1.1 Variation 1: Reaction of Dienophiles with Propenal, Alkylpropenals, or Methyl Vinyl Ketone 770
32.5.3.1.10.1.2 Variation 2: Reaction of Dienophiles with Substituted 2-Oxobut-3-enoic Acid Esters 772
32.5.3.1.10.1.3 Variation 3: Reaction of Dienophiles with 2-Methylene 1,3-Diketones or 2-Benzoacrylonitriles 774
32.5.3.1.10.1.4 Variation 4: Treatment of Dienophiles with Phosphonoheterodienes 776
32.5.3.1.10.1.5 Variation 5: Reaction of Dienophiles with a-Sulfanyl, a-Sulfinyl, or a-Sulfonyl Heterodienes 777
32.5.3.1.10.1.6 Variation 6: Reaction of Dienophiles with a-Trifluoromethyl Heterodienes
779
32.5.3.1.10.2 Method 2: Intramolecular Hetero-Diels--Alder Reactions 780
32.5.3.1.11 Miscellaneous Methods 781
32.5.3.1.11.1 Method 1: Retro-Nazarov Reaction 781
32.5.4 Product Subclass 4: Ene--OX Compounds (X = O, S, Se, Te) 792
32.5.4.1 Synthesis of Product Subclass 4 792
32.5.4.1.1 Method 1: Enolate Tosylation 792
32.5.4.1.2 Method 2: Addition to Alkynes 793
32.5.4.1.2.1 Variation 1: Halotosyloxylation of Alkynes 793
32.5.4.1.2.2 Variation 2: Selenotosyloxylation of Alkynes 794
32.5.4.1.3 Method 3: Dehydrofluorination of Polyfluoropropyl 4-Toluenesulfonates 795
32.5.4.1.4 Method 4: Substituent Modification of Polyfluoro-1-(tosyloxy)prop-1-enes 795
32.5.4.1.5 Method 5: Enolate Trifluoromethylsulfonylation by Trifluoromethanesulfonic Anhydride 796
32.5.4.1.6 Method 6: Enolate Trifluoromethylsulfonylation by N-Aryl Trifluoromethanesulfonimides 801
32.5.4.1.7 Method 7: Enolate Trifluoromethylsulfonylation by N-Phenylbis(trifluoromethane)sulfonimide 806
32.5.4.1.8 Method 8: Enolate Perfluoroalkylsulfonylation 809
32.5.4.1.9 Methods 9: Miscellaneous Reactions 812
32.5.5 Product Subclass 5: Ene--ON Compounds 818
32.5.5.1 Synthesis of Product Subclass 5 818
32.5.5.1.1 Method 1: Cycloaddition Reactions 818
32.5.5.1.1.1 Variation 1: 1,3-Dipolar Cycloaddition of Nitrones to Electron-Deficient Allenes 818
32.5.5.1.1.2 Variation 2: Addition of Hydroxylamines to Electron-Deficient Allenes 820
32.5.5.1.1.3 Variation 3: Cycloaddition of Nitrones to Acetylenic Compounds 822
32.5.5.1.1.4 Variation 4: Cyclization of N-Propargylhydroxylamines 824
32.5.5.1.2 Method 2: Addition of Oximes to Acetylene 825
32.5.6 Product Subclass 6: Ene--OP Compounds 830
32.5.6.1 Synthesis of Product Subclass 6 830
32.5.6.1.1 Method 1: Enolate Phosphorylation 830
32.5.6.1.1.1 Variation 1: Synthesis from Aldehydes 830
32.5.6.1.1.2 Variation 2: Synthesis from Ketones 832
32.5.6.1.1.3 Variation 3: Synthesis from Imides 837
32.5.6.1.2 Method 2: Addition of Nucleophilic Reagents to Alkynes 838
32.5.6.1.2.1 Variation 1: Addition to Terminal Alkynes 838
32.5.6.1.2.2 Variation 2: Addition to Internal Alkynes 840
32.5.6.1.3 Method 3: Perkow Reaction 842
32.5.6.1.4 Method 4: Skeleton Modification of P-Oxyalkenes 843
32.5.6.1.4.1 Variation 1: Diels--Alder Reactions 843
32.5.6.1.4.2 Variation 2: [2,3]-Sigmatropic Rearrangements 844
32.5.6.1.5 Methods 5: Miscellaneous Reactions 846
Keyword Index 850
Author Index 902
Abbreviations 944
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Reihe/Serie | Science of Synthesis |
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • enolates • enol ethers • halogen-substituted • heteroatom-substituted • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • oxygen-substituted alkenes • OXYG EN-SUBSTITUTED ALKENES • Peptide synthesis • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • vinyl halides • vinyl trifluoromethanesulfonates |
ISBN-10 | 3-13-172081-6 / 3131720816 |
ISBN-13 | 978-3-13-172081-8 / 9783131720818 |
Haben Sie eine Frage zum Produkt? |
Größe: 16,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich