The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, -ray and radio-astronomy, with comprehensive coverage of the literature
Front Cover 1
Theoretical Physics and Astrophysics 4
Copyright Page 5
Table of Contents 6
PREFACE TO THE ENGLISH EDITION 8
PREFACE TO THE RUSSIAN EDITION 10
CHAPTER I. THE HAMILTONIAN APPROACH TO ELECTRODYNAMICS 12
CHAPTER II. RADIATION REACTION 38
CHAPTER III. UNIFORMLY ACCELERATED CHARGE 48
CHAPTER IV. RADIATION OF A MOVING PARTICLE 64
CHAPTER V. SYNCHROTRON RADIATION 82
CHAPTER VI. ELECTRODYNAMICS OF A CONTINUOUS MEDIUM 114
CHAPTER VII. CHERENKOV EFFECT, DOPPLER EFFECT, TRANSITION RADIATION 136
CHAPTER VIII. ON SUPERLUMINAL RADIATION SOURCES 182
CHAPTER IX. REABSORPTION AND RADIATIVE TRANSFER 204
CHAPTER X. ELECTRODYNAMICS OF MEDIA WITH SPATIAL DISPERSION 228
CHAPTER XI. DIELECTRIC PERMITTIVITY AND WAVE PROPAGATION IN A PLASMA 258
CHAPTER XII. THE ENERGY-MOMENTUM TENSOR IN MACROSCOPIC ELECTRODYNAMICS 292
CHAPTER XIII. FLUCTUATIONS AND VAN DER WAALS FORCES 304
CHAPTER XIV. SCATTERING OF WAVES IN A MEDIUM 326
CHAPTER XV. COSMIC RAY ASTROPHYSICS 354
CHAPTER XVI. X-RAY ASTRONOMY 400
CHAPTER XVII. GAMMA ASTRONOMY 442
REFERENCES 458
INDEX 466
THE HAMILTONIAN APPROACH TO ELECTRODYNAMICS
Publisher Summary
This chapter discusses the Hamiltonian approach to electrodynamics for the interpretation of a whole range of electrodynamical problems. The transition from classical to quantum mechanical electrodynamics in the Hamiltonian framework is completely analogous to the transition from classical, Newtonian mechanics to nonrelativistic quantum mechanics. The field of a uniformly moving charge is not at all necessarily a stationary one. The charge can already have moved for some time uniformly; however, the field entrained by it can still differ from the stationary field—which exists when the motion with a constant velocity has been going on for a sufficiently long time. For an electron that moves uniformly for t ≥ 0, there exists the difference between a free radiation field and the transverse entrained field. The actual construction of quantum electrodynamics is completely free from any assumption about the absence of charges and is in no way connected with any identification of a quantized transverse field with a free radiation field, that is, a collection of photons.
The Hamiltonian method in classical electrodynamics in vacuo.
Quantization. Photons and pseudophotons.
Does a uniform moving electron radiate?
We shall in what follows widely apply the so-called Hamiltonian method for the interpretation of a whole range of electrodynamical problems. When we use this method electrodynamics is formulated in a way which is strongly reminiscent of mechanics. The transition from classical to quantum mechanical electrodynamics is thus in the Hamiltonian framework completely analogous to the transition from classical, Newtonian mechanics to non-relativistic quantum mechanics. Nowadays much more sophisticated methods are predominant in quantum electrodynamics and in general in quantum field theory and there are strong arguments for using them. However, the use of the Hamiltonian method is still completely justified for the elucidation of a large number of physical aspects; this is, for instance, also done by Heitler (1947) in his book. Moreover, we shall in what follows apply the Hamiltonian method mainly to classical electrodynamics, both in vacuo and in a medium.
Before introducing the Hamiltonian method we shall give the main equations and relations and we shall do that in considerable detail for future convenience.
The usual form of the Maxwell equations in vacuo is:†
H=4πcρv+∂E∂t,div E=4πρ,curl E=−1c∂H∂tdiv H=0. (1.1)
Here H is the magnetic field strength, E the electrical field strength, ρ the charge density, v the velocity of the charges, and c the velocity of light in vacuo. We assume for the sake of simplicity that there is a single point charge e, at position ri(t), in the electromagnetic field. In that casethe charge density is given by a δ-function
=eδ(r−ri(t)). (1.2)
It is well known that Eqs. (1.1) can be reduced to the equations for the electromagnetic potentials A and ϕ which are connected with the fields E and H sby the relations
=−1c∂A∂t−grad ϕ,H=curl A. (1.3)
The third and fourth of Eqs. (1.1) are automatically satisfied by virtue of (1.3), as can be verified by substitution.
From the first and second of Eqs. (1.1) we get, using (1.3) and the identity
curl A=−∇2A+grad div A, (1.4)
equations for the potentials A and ϕ :
2A−1c2∂2A∂t2−grad(1c∂ϕ∂t+div A)=−4πcρv,∇2ϕ+1c∂∂tdiv A=−4πρ. (1.5)
The set of Eqs. (1.5) determines the potentials A and ϕ. The fields E and H can be found using Eqs. (1.3)
It is well known that the vector potential A and the scalar potential ϕ are not uniquely determined. Indeed, we can change to new potentials:
′=A+grad χ,ϕ′=ϕ−1c∂χ∂t, (1.6)
where χ is an arbitrary function of the coordinates and the time. This is called a gauge transformation. One can easily show that the fields E and H do not change under a gauge transformation. They can be expressed in terms of A′ and ϕ′ just as well as in terms of A and ϕ; one can verify this by substituting (1.6) into (1.3).
The fact that the definition of the potentials is not unique enables us to impose upon A and ϕ an additional condition. This condition can be chosen in such a way that the form of Eqs. (1.5)becomes as simple as possible.
For instance, we can impose as such a condition the relation:
A+1c∂ϕ∂t=0. (1.7)
This is a relativistically invariant condition which is called the Lorentz condition, and the resulting gauge is called the Lorentz gauge. It can be written in the form
Ai∂xi=0, (1.7a)
where we have assumed summation over repeated indexes, as will be done everywhere in what follows. We use here and elsewhere in this book (apart from Chapter 12) the notation of Landau and Lifshitz (1975). We refer to that text for the definition of four-vectors, for the difference between covariant and components and for the summation convention.
One sees easily that if condition (1.7) is satisfied, the Maxwell equations take the following form:
A≡(∇2−1c2∂2∂t2)A=−4πcρv,□ϕ≡(∇2−1c2∂2∂t2)ϕ=−4πρ. (1.8)
One should not think that the condition (1.7) and the set of Eqs. (1.8) determine A and ϕ completely. We can still perform a gauge transformation of the form (1.6), where in the present case χ must satisfy the homogeneous equation χ = 0. The fields E and H remain invariant under the transformation.
Splitting the field into longitudinal and transverse components is important, especially in the Hamiltonian framework. We split the vectors E and H into components
=Eℓ+Etr,H=Htr, (1.9)
where div Etr = 0 and, by virtue of (1.1), div Htr = div H= 0.
We demand that the vector potential A describe only the transverse field; this means that we impose on it the condition
A=0, (1.10)
instead of the additional condition (1.7). Sometimes the potential which satisfies the condition (1.10) is denoted by Atr.
If condition (1.10) is satisfied, the Eqs. (1.5) for A and ϕ take the form
2ϕ=−4πρ, (1.11)
2A−1c2∂2A∂t2=−4πcρv+1cgrad ∂ϕ∂t. (1.12)
We see that we have obtained the ‘static’ Poisson equation for the potential ϕ.
If ρ is the charge density (1.2) of a point charge, the solution is the well known one:
=e|r−ri(t)| (1.13)
where ri(t) is the position of the charge at time t. The vector potential A now describes only the transverse field. The gauge (1.10) is called the Coulomb gauge† The potentials A and ϕ are here determined apart from a gauge function χ(r,t) which satisfies the condition ∇2χ = 0.
We now evaluate the energy of the electromagnetic field,
=∫E2+H28πd3r (1.14)
We substitute here the expressions for the fields E and H in the form (1.9); it is clear that in the case of the Coulomb gauge (1.10) we have
tr=−1c∂A∂t,Eℓ=−grad ϕ. (1.15)
Erscheint lt. Verlag | 22.10.2013 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik | |
ISBN-10 | 1-4832-9318-1 / 1483293181 |
ISBN-13 | 978-1-4832-9318-9 / 9781483293189 |
Haben Sie eine Frage zum Produkt? |
Größe: 47,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 7,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich