Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Oscillator Representation in Quantum Physics - M. Dineykhan, G.V. Efimov, G. Ganbold, S.N. Nedelko

Oscillator Representation in Quantum Physics

Buch | Softcover
IX, 282 Seiten
2014 | 1. Softcover reprint of the original 1st ed. 1995
Springer Berlin (Verlag)
978-3-662-14063-5 (ISBN)
CHF 74,85 inkl. MwSt
The investigation ofmost problems of quantum physics leads to the solution of the Schrodinger equation with an appropriate interaction Hamiltonian or potential. However, the exact solutions are known for rather a restricted set of potentials, so that the standard eternal problem that faces us is to find the best effective approximation to the exact solution of the Schrodinger equation under consideration. In the most general form, this problem can be formulated as follows. Let a total Hamiltonian H describing a relativistic (quantum field theory) or a nonrelativistic (quantum mechanics) system be given. Our problem is to solve the Schrodinger equation Hlft = Enlftn, n i. e. , to find the energy spectrum {En} and the proper wave functions {lft } n including the'ground state or vacuum lft = 10). The main idea of any ap o proximation technique is to find a decomposition in such a way that Ha describes our physical system in the "closest to H" manner, and the Schrodinger equation HolJt. (O) = E(O)lJt. (O) n n n can be solved exactly. The interaction Hamiltonian HI is supposed to give small corrections to the zero approximation which can be calculated. In this book, we shall consider the problem of a strong coupling regime in quantum field theory, calculations ofpath or functional integrals over the Gaussian measure and spectral problems in quantum mechanics. Let us con sider these problems briefly.

The Phase Structure of Quantum Field Systems.- Formulation of the Method.- The Phase Structure of the (?2)2 Field Theory in R1+1.- The Phase Structure of the Three-Dimensional ?4 Theory.- The Four-Dimensional ?4 Theory.- The ?4 Theory at Finite Temperatures.- The Two-Dimensional Yukawa Theory.- The Gaussian Equivalent Representation of Functional Integrals in Quantum Physics.- Path Integrals in Quantum Physics.- The Gaussian Equivalent Representation of Functional Integrals.- The Polaron Problem.- The Character of the Phase Transition in Two- and Three-Dimensional ?4 Theory.- Wave Propagation in Randomly Distributed Media.- Bound States in QFT.- Oscillator Representation in Quantum Mechanics.- The Oscillator in Quantum Mechanics.- The Oscillator Representation in Rd.- The Oscillator Representation in the Space R3.- Anharmonic Potentials.- Coulomb-Type Potentials.- The Relativized Schrödinger Equation.- Three-Body Coulomb Systems.

Erscheint lt. Verlag 18.4.2014
Reihe/Serie Lecture Notes in Physics Monographs
Zusatzinfo IX, 282 p. 8 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 428 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte canoncial transformation • oscillator representation • Phase structure • quantum field theory • quantum mechanics • Quantum Physics • Renormalization Group
ISBN-10 3-662-14063-2 / 3662140632
ISBN-13 978-3-662-14063-5 / 9783662140635
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 109,95