Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Developments in Electrochemistry -

Developments in Electrochemistry

Science Inspired by Martin Fleischmann
Buch | Hardcover
392 Seiten
2014
John Wiley & Sons Inc (Verlag)
978-1-118-69443-5 (ISBN)
CHF 139,95 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
* Presents the state of electrochemistry research and highlights its potential with recent examples of its applications. * The book both demonstrates how far-reaching the importance of Fleischmann s various works is, and overcomes the wrongly narrowed view on the cold fusion activities.
Martin Fleischmann was truly one of the ‘fathers’ of modern electrochemistry having made major contributions to diverse topics within electrochemical science and technology. These include the theory and practice of voltammetry and in situ spectroscopic techniques, instrumentation, electrochemical phase formation, corrosion, electrochemical engineering, electrosynthesis and cold fusion. 

While intended to honour the memory of Martin Fleischmann, Developments in Electrochemistry is neither a biography nor a history of his contributions. Rather, the book is a series of critical reviews of topics in electrochemical science associated with Martin Fleischmann but remaining important today. The authors are all scientists with outstanding international reputations who have made their own contribution to their topic; most have also worked with Martin Fleischmann and benefitted from his guidance.

Each of the 19 chapters within this volume begin with an outline of Martin Fleischmann’s contribution to the topic, followed by examples of research, established applications and prospects for future developments.

The book is of interest to both students and experienced workers in universities and industry who are active in developing electrochemical science.

Derek Pletcher is Emeritus Professor at the University of Southampton. His research interests extend from fundamental electrochemistry, through electrochemical engineering to the industrial applications of electrolysis. He is the author of ~ 340 technical papers and ~ 30 reviews and has supervised the training of more than 90 postgraduate students. In 2010, he was awarded the prestigious Vittorio de Nora Medal by the US Electrochemical Society for his work related to the applications of electrochemistry. He is an elected Fellow of the Electrochemical Society (2005) and was awarded their Henry Linford Medal for Teaching Excellence in Electrochemistry (2006). He is a past Editor of the Journal of Applied Electrochemistry (1980 - 85) and presently serves on the Editorial Boards of Electrochimica Acta and Electrochemical Communications. Zhong-Qun Tian heads the Surface-enhanced Raman Spectroscopy and Nano-electrochemistry research group at Xiamen University. He graduated from the Department of Chemistry at Xiamen University in 1982 with a BSc and received his Ph.D in 1987 under advisor, Martin Fleischmann, FRS. He is a Fellow of International Society of Electrochemistry (ISE), 2010- ;Regional Representative (China) of International Society of Electrochemistry (ISE), 2007-2009; Fellow of Royal Society of Chemistry, UK, 2005- ; Council Member of Chinese Society of Micro/Nano Technology, 2005-; Guest Professor of Chemistry, Chinese University of Hong Kong, China, 2006-; Guest Professor of Chemistry, Univ. of Science and Technology of China, China, 2001-; Visiting Professor of Ecole Normal Superior, Paris, France, 2008/9. He has over 310 papers, five chapters in encyclopaedias and books and has edited two special journal issues. David Williams is Professor of Electrochemistry at the University of Auckland, NZ. His research covers electrochemistry and corrosion science. He is a graduate of the University of Auckland and developed his research career in electrochemistry and chemical sensors at the UK Atomic Energy Research Establishment, in the 1980s. He became Thomas Graham Professor of Chemistry at UCL in 1991. He joined the faculty of the Chemistry Dept at Auckland University in 2006. He is an Adjunct Professor at Dublin City University. He is a Visiting Professor at UCL, and University of Southampton, and Honorary Professor of the Royal Institution of Great Britain. He has published around 200 papers in international journals, and is the inventor of around 40 patents.

List of Contributors xiii

1 Martin Fleischmann – The Scientist and the Person 1

2 A Critical Review of the Methods Available for Quantitative Evaluation of Electrode Kinetics at Stationary Macrodisk Electrodes 21
Alan M. Bond, Elena A. Mashkina and Alexandr N. Simonov

2.1 DC Cyclic Voltammetry 23

2.1.1 Principles 23

2.1.2 Processing DC Cyclic Voltammetric Data 26

2.1.3 Semiintegration 29

2.2 AC Voltammetry 32

2.2.1 Advanced Methods of Theory–Experiment Comparison 35

2.3 Experimental Studies 36

2.3.1 Reduction of [Ru(NH3)6]3+ in an Aqueous Medium 36

2.3.2 Oxidation of FeII(C5H5)2 in an Aprotic Solvent 40

2.3.3 Reduction of [Fe(CN)6]3− in an Aqueous Electrolyte 42

2.4 Conclusions and Outlook 43

References 45

3 Electrocrystallization: Modeling and Its Application 49
Morteza Y. Abyaneh

3.1 Modeling Electrocrystallization Processes 53

3.2 Applications of Models 56

3.2.1 The Deposition of Lead Dioxide 58

3.2.2 The Electrocrystallization of Cobalt 60

3.3 Summary and Conclusions 61

References 63

4 Nucleation and Growth of New Phases on Electrode Surfaces 65
Benjamin R. Scharifker and Jorge Mostany

4.1 An Overview of Martin Fleischmann’s Contributions to Electrochemical Nucleation Studies 66

4.2 Electrochemical Nucleation with Diffusion-Controlled Growth 67

4.3 Mathematical Modeling of Nucleation and Growth Processes 68

4.4 The Nature of Active Sites 69

4.5 Induction Times and the Onset of Electrochemical Phase Formation Processes 71

4.6 Conclusion 72

References 72

5 Organic Electrosynthesis 77
Derek Pletcher

5.1 Indirect Electrolysis 79

5.2 Intermediates for Families of Reactions 80

5.3 Selective Fluorination 84

5.4 Two-Phase Electrolysis 85

5.5 Electrode Materials 87

5.6 Towards Pharmaceutical Products 88

5.7 Future Prospects 90

References 91

6 Electrochemical Engineering and Cell Design 95
Frank C. Walsh and Derek Pletcher

6.1 Principles of Electrochemical Reactor Design 96

6.1.1 Cell Potential 96

6.1.2 The Rate of Chemical Change 97

6.2 Decisions During the Process of Cell Design 98

6.2.1 Strategic Decisions 98

6.2.2 Divided and Undivided Cells 98

6.2.3 Monopolar and Bipolar Electrical Connections to Electrodes 99

6.2.4 Scaling the Cell Current 100

6.2.5 Porous 3D Electrode Structures 100

6.2.6 Interelectrode Gap 101

6.3 The Influence of Electrochemical Engineering on the Chlor-Alkali Industry 102

6.4 Parallel Plate Cells 105

6.5 Redox Flow Batteries 106

6.6 Rotating Cylinder Electrode Cells 107

6.7 Conclusions 108

References 109

7 Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Early History, Principles, Methods, and Experiments 113
Zhong-Qun Tian and Xue-Min Zhang

7.1 Early History of Electrochemical Surface-Enhanced Raman Spectroscopy 116

7.2 Principles and Methods of SERS 117

7.2.1 Electromagnetic Enhancement of SERS 118

7.2.2 Key Factors Influencing SERS 119

7.2.3 “Borrowing SERS Activity” Methods 121

7.2.4 Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy 123

7.3 Features of EC-SERS 124

7.3.1 Electrochemical Double Layer of EC-SERS Systems 124

7.3.2 Electrolyte Solutions and Solvent Dependency 125

7.4 EC-SERS Experiments 125

7.4.1 Measurement Procedures for EC-SERS 125

7.4.2 Experimental Set-Up for EC-SERS 127

7.4.3 Preparation of SERS Substrates 128

Acknowledgments 131

References 131

8 Applications of Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) 137
Marco Musiani, Jun-Yang Liu and Zhong-Qun Tian

8.1 Pyridine Adsorption on Different Metal Surfaces 138

8.2 Interfacial Water on Different Metals 141

8.3 Coadsorption of Thiourea with Inorganic Anions 143

8.4 Electroplating Additives 146

8.5 Inhibition of Copper Corrosion 147

8.6 Extension of SERS to the Corrosion of Fe and Its Alloys: Passivity 149

8.6.1 Fe-on-Ag 150

8.6.2 Ag-on-Fe 150

8.7 SERS of Corrosion Inhibitors on Bare Transition Metal Electrodes 150

8.8 Lithium Batteries 152

8.9 Intermediates of Electrocatalysis 154

Acknowledgments 156

References 156

9 In-Situ Scanning Probe Microscopies: Imaging and Beyond 163
Bing-Wei Mao

9.1 Principle of In-Situ STM and In-Situ AFM 164

9.1.1 Principle of In-Situ STM 164

9.1.2 Principle of In-Situ AFM 166

9.2 In-Situ STM Characterization of Surface Electrochemical Processes 167

9.2.1 In-Situ STM Study of Electrode–Aqueous Solution Interfaces 167

9.2.2 In-Situ STM Study of Electrode–Ionic Liquid Interface 167

9.3 In-Situ AFM Probing of Electric Double Layer 170

9.4 Electrochemical STM Break-Junction for Surface Nanostructuring and Nanoelectronics and Molecular Electronics 173

9.5 Outlook 176

References 177

10 In-Situ Infrared Spectroelectrochemical Studies of the Hydrogen Evolution Reaction 183
Richard J. Nichols

10.1 The H+/H2 Couple 183

10.2 Single-Crystal Surfaces 184

10.3 Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopy 186

10.4 Surface-Enhanced Raman Spectroscopy 189

10.5 Surface-Enhanced IR Absorption Spectroscopy 190

10.6 In-Situ Sum Frequency Generation Spectroscopy 193

10.7 Spectroscopy at Single-Crystal Surfaces 194

10.8 Overall Conclusions 197

References 198

11 Electrochemical Noise: A Powerful General Tool 201
Claude Gabrielli and David E. Williams

11.1 Instrumentation 202

11.2 Applications 204

11.2.1 Elementary Phenomena 204

11.2.2 Bioelectrochemistry 205

11.2.3 Electrocrystallization 207

11.2.4 Corrosion 209

11.2.5 Other Systems 215

11.3 Conclusions 217

References 217

12 From Microelectrodes to Scanning Electrochemical Microscopy 223
Salvatore Daniele and Guy Denuault

12.1 The Contribution of Microelectrodes to Electroanalytical Chemistry 224

12.1.1 Advantages of Microelectrodes in Electroanalysis 224

12.1.2 Microelectrodes and Electrode Materials 226

12.1.3 New Applications of Microelectrodes in Electroanalysis 227

12.2 Scanning Electrochemical Microscopy (SECM) 230

12.2.1 A Brief History of SECM 230

12.2.2 SECM with Other Techniques 231

12.2.3 Tip Geometries and the Need for Numerical Modeling 233

12.2.4 Applications of SECM 234

12.3 Conclusions 235

References 235

13 Cold Fusion After A Quarter-Century: The Pd/D System 245
Melvin H. Miles and Michael C.H. McKubre

13.1 The Reproducibility Issue 247

13.2 Palladium–Deuterium Loading 247

13.3 Electrochemical Calorimetry 249

13.4 Isoperibolic Calorimetric Equations and Modeling 250

13.5 Calorimetric Approximations 251

13.6 Numerical Integration of Calorimetric Data 252

13.7 Examples of Fleischmann’s Calorimetric Applications 254

13.8 Reported Reaction Products for the Pd/D System 256

13.8.1 Helium-4 256

13.8.2 Tritium 256

13.8.3 Neutrons, X-Rays, and Transmutations 257

13.9 Present Status of Cold Fusion 257

Acknowledgments 258

References 258

14 In-Situ X-Ray Diffraction of Electrode Surface Structure 261
Andrea E. Russell, Stephen W.T. Price and Stephen J. Thompson

14.1 Early Work 262

14.2 Synchrotron-Based In-Situ XRD 264

14.3 Studies Inspired by Martin Fleischmann’s Work 266

14.3.1 Structure of Water at the Interface 266

14.3.2 Adsorption of Ions 268

14.3.3 Oxide/Hydroxide Formation 268

14.3.4 Underpotential Deposition (upd) of Monolayers 270

14.3.5 Reconstructions of Single-Crystal Surfaces 275

14.3.6 High-Surface-Area Electrode Structures 275

14.4 Conclusions 277

References 277

15 Tribocorrosion 281
Robert J.K. Wood

15.1 Introduction and Definitions 281

15.1.1 Tribocorrosion 282

15.1.2 Erosion 282

15.2 Particle–Surface Interactions 283

15.3 Depassivation and Repassivation Kinetics 283

15.3.1 Depassivation 284

15.3.2 Repassivation Rate 286

15.4 Models and Mapping 287

15.5 Electrochemical Monitoring of Erosion–Corrosion 290

15.6 Tribocorrosion within the Body: Metal-on-Metal Hip Joints 291

15.7 Conclusions 293

Acknowledgments 293

References 293

16 Hard Science at Soft Interfaces 295
Hubert H. Girault

16.1 Charge Transfer Reactions at Soft Interfaces 295

16.1.1 Ion Transfer Reactions 296

16.1.2 Assisted Ion Transfer Reactions 298

16.1.3 Electron Transfer Reactions 299

16.2 Electrocatalysis at Soft Interfaces 300

16.2.1 Oxygen Reduction Reaction (ORR) 301

16.2.2 Hydrogen Evolution Reaction (HER) 302

16.3 Micro- and Nano-Soft Interfaces 304

16.4 Plasmonics at Soft Interfaces 305

16.5 Conclusions and Future Developments 305

References 307

17 Electrochemistry in Unusual Fluids 309
Philip N. Bartlett

17.1 Electrochemistry in Plasmas 310

17.2 Electrochemistry in Supercritical Fluids 314

17.2.1 Applications of SCF Electrochemistry 321

17.3 Conclusions 325

Acknowledgments 325

References 325

18 Aspects of Light-Driven Water Splitting 331
Laurence Peter

18.1 A Very Brief History of Semiconductor Electrochemistry 332

18.2 Thermodynamic and Kinetic Criteria for Light-Driven Water Splitting 334

18.3 Kinetics of Minority Carrier Reactions at Semiconductor Electrodes 336

18.4 The Importance of Electron–Hole Recombination 338

18.5 Fermi Level Splitting in the Semiconductor–Electrolyte Junction 339

18.6 A Simple Model for Light-Driven Water-Splitting Reaction 341

18.7 Evidence for Slow Electron Transfer During Light-Driven Water Splitting 343

18.8 Conclusions 345

Acknowledgments 345

References 346

19 Electrochemical Impedance Spectroscopy 349
Samin Sharifi-Asl and Digby D. Macdonald

19.1 Theory 350

19.2 The Point Defect Model 350

19.2.1 Calculation of Y0F 355

19.2.2 Calculation of ΔC0 i ΔU 355

19.2.3 Calculation of ΔCL v ΔU 356

19.3 The Passivation of Copper in Sulfide-Containing Brine 357

19.4 Summary and Conclusions 363

Acknowledgments 363

References 363

Index 367

Verlagsort New York
Sprache englisch
Maße 177 x 252 mm
Gewicht 907 g
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
ISBN-10 1-118-69443-0 / 1118694430
ISBN-13 978-1-118-69443-5 / 9781118694435
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90
Thermodynamik | Kinetik | Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90