Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Equation that Couldn't Be Solved (eBook)

How Mathematical Genius Discovered the Language of Symmetry

(Autor)

eBook Download: EPUB
2005 | 1. Auflage
368 Seiten
Simon & Schuster (Verlag)
978-0-7432-7462-3 (ISBN)
Systemvoraussetzungen
18,77 inkl. MwSt
(CHF 18,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

What do the music of J. S. Bach, the basic forces of nature, Rubik's Cube, and the selection of mates have in common? They are all characterized by certain symmetries. Symmetry is the concept that bridges the gap between science and art, between the world of theoretical physics and the everyday world we see around us. Yet the 'language' of symmetry--group theory in mathematics--emerged from a most unlikely source: an equation that couldn't be solved.

Over the millennia, mathematicians solved progressively more difficult algebraic equations until they came to what is known as the quintic equation. For several centuries it resisted solution, until two mathematical prodigies independently discovered that it could not be solved by the usual methods, thereby opening the door to group theory. These young geniuses, a Norwegian named Niels Henrik Abel and a Frenchman named Evariste Galois, both died tragically. Galois, in fact, spent the night before his fatal duel (at the age of twenty) scribbling another brief summary of his proof, at one point writing in the margin of his notebook 'I have no time.'

The story of the equation that couldn't be solved is a story of brilliant mathematicians and a fascinating account of how mathematics illuminates a wide variety of disciplines. In this lively, engaging book, Mario Livio shows in an easily accessible way how group theory explains the symmetry and order of both the natural and the human-made worlds.


What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named variste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.

Chapter One: Symmetry

An inkblot on a piece of paper is not particularly attractive to the eye, but if you fold the paper before the ink dries, you may get something that looks like figure 1 that is much more intriguing. In fact, the interpretation of similar inkblots forms the basis for the famous Rorschach test developed in the 1920s by the Swiss psychiatrist Hermann Rorschach. The declared purpose of the test is to somehow elicit the hidden fears, wild fantasies, and deeper thoughts of the viewers interpreting the ambiguous shapes. The actual value of the test as an 'x-ray of the mind' is vehemently debated in psychological circles. As Emory University psychologist Scott Lilienfeld once put it, 'Whose mind, that of the client or the examiner?' Nevertheless, there is no denial of the fact that images such as that in figure 1 convey some sort of attractive and fascinating impression. Why?

Is it because the human body, most animals, and so many human artifacts possess a similar bilateral symmetry? And why do all those zoological features and creations of the human imagination exhibit such a symmetry in the first place?

Most people perceive harmonious compositions such as Botticelli's Birth of Venus as symmetrical. Art historian Ernst H. Gombrich even notes that the 'liberties which Botticelli took with nature in order to achieve a graceful outline add to the beauty and harmony of the design.' Yet mathematicians will tell you that the arrangements of colors and forms in that painting are not symmetric at all in the mathematical sense. Conversely, most nonmathematical viewers do not perceive the pattern in figure 3 as symmetrical, even though it actually is symmetrical according to the formal mathematical definition. So what is symmetry really? What role, if any, does it play in perception? How is it related to our aesthetic sensibility? In the scientific realm, why has symmetry become such a pivotal concept in our ideas about the cosmos around us and in the fundamental theories attempting to explain it? Since symmetry spans such a wide range of disciplines, what 'language' and what 'grammar' do we use to describe and characterize symmetries and their attributes, and how was that universal language invented? On a lighter note, can symmetry provide an answer to the all-important question posed in the title of one of the songs of rock star Rod Stewart -- 'Do Ya Think I'm Sexy?'

I will try to provide at least partial answers to all of these questions and many more. Along the way, I hope that the story as a whole will depict both the humanistic side of mathematics and, even more importantly, the human side of mathematicians. As we shall see, symmetry is the paramount tool for bridging the gap between science and art, between psychology and mathematics. It permeates objects and concepts ranging from Persian carpets to the molecules of life, from the Sistine Chapel to the sought-after 'Theory of Everything.' Yet group theory, the mathematical language that describes the essence of symmetries and explores their properties, did not emerge from the study of symmetries at all. Rather, this astonishingly unifying idea of modern thought emanated from a most unlikely source -- an equation that couldn't be solved. The dramatic and tortuous history of this equation is an essential part of this intellectual saga. At the same time, this tale will shed light on the loneliness of genius and on the tenacity of the human intellect in the face of seemingly insurmountable challenges. I have put a tremendous effort into trying to solve the two-centuries-old mystery of the death of the protagonist of this story -- the brilliant mathematician variste Galois....

Erscheint lt. Verlag 19.9.2005
Sprache englisch
Themenwelt Geisteswissenschaften Geschichte
Mathematik / Informatik Mathematik Geschichte der Mathematik
Naturwissenschaften
Technik
ISBN-10 0-7432-7462-8 / 0743274628
ISBN-13 978-0-7432-7462-3 / 9780743274623
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A Mathematician's Toolkit for Making Sense of Your World

von Professor Oliver Johnson

eBook Download (2023)
Blink Publishing (Verlag)
CHF 6,30
A History of Welsh Mathematical Greats

von Gareth Ffowc Roberts

eBook Download (2022)
University of Wales Press (Verlag)
CHF 14,65