Approaches to Numerical Relativity
Cambridge University Press (Verlag)
978-0-521-43976-3 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
This volume includes contributions by leading workers in the field given at the workshop on Numerical Relativity held in Southampton in December 1991. Numerical Relativity, or the numerical solution of astrophysical problems using powerful computers to solve Einstein's equations, has grown rapidly over the last 15 years. It is now an important route to understanding the structure of the Universe, and is the only route currently available for approaching certain important astrophysical scenarios. The Southampton meeting was notable for the first full report of the new 2+2 approach and the related null or characteristic approaches, as well as for updates on the established 3+1 approach, including both Newtonian and fully relativistic codes. The contributions range from theoretical (formalisms, existence theorems) to the computational (moving grids, multiquadrics and spectral methods).
Introduction Ray d'Inverno; Preface C. J. S. Clarke; Part I. Theoretical Approaches: 1. Numerical relativity on a transputer array Ray d'Inverno; 2. Some aspects of the characteristic initial value problem in numerical relativity Nigel Bishop; 3. The characteristic initial value problem in general relativity J. M. Stewart; 4. Algebraic approachs to the characteristic initial value problem in general relativity Jõrg Frauendiener; 5. On hyperboidal hypersurfaces Helmut Friedrich; 6. The initial value problem on null cones J. A. Vickers; 7. Introduction to dual-null dynamics S. A. Hayward; 8. On colliding plane wave space-times J. B. Griffiths; 9. Boundary conditions for the momentum constraint Niall O Murchadha; 10. On the choice of matter model in general relativity A. D. Rendall; 11. A mathematical approach to numerical relativity J. W. Barrett; 12. Making sense of the effects of rotation in general relativity J. C. Miller; 13. Stability of charged boson stars and catastrophe theory Franz E. Schunck, Fjodor V. Kusmartsev and Eckehard W. Mielke; Part II. Practical Approaches: 14. Numerical asymptotics R. Gómez and J. Winicour; 15. Instabilities in rapidly rotating polytropes Scott C. Smith and Joan M. Centrella; 16. Gravitational radiation from coalescing binary neutron stars Ken-Ichi Oohara and Takashi Nakamura; 17. 'Critical' behaviour in massless scalar field collapse M. W. Choptuik; 18. Goudunov-type methods applied to general relativistic gravitational collapse José Ma. Ibánez, José Ma. Martí, Juan A. Miralles and J. V. Romero; 19. Astrophysical sources of gravitational waves and neutrinos Silvano Bonazzola, Eric Gourgoulhon, Pawel Haensel and Jean-Alain Marck; 20. Gravitational radiation from triaxial core collapse Jean-Alain Marck and Silvano Bonazzola; 21. A vacuum fully relativistic 3D numerical code C. Bona and J. Massó; 22. Solution of elliptic equations in numerical relativity using multiquadrics M. R. Dubal, S. R. Oliveira and R. A. Matzner; 23. Self-gravitating thin disks around rotating black holes A. Lanza; 24. An ADI and causal reconnection Gabrielle D. Allen and Bernard F. Schutz; 25. Time-symmetric ADI and causal reconnection Miguel Alcubierre and Bernard F. Schutz; 26. The numerical study of topological defects E. P. S. Shellard; 27. Computations of bubble growth during the cosmological quark-hadron transition J. C. Miller and O. Pantano; 28. Initial data of axisymmetric gravitational waves with a cosmological constant Ken-Ichi Nakao, Kei-Ichi Maeda, Takashi Nakamura and Ken-Ichi Oohara.
Erscheint lt. Verlag | 10.12.1992 |
---|---|
Zusatzinfo | 7 Tables, unspecified; 108 Line drawings, unspecified |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 179 x 254 mm |
Gewicht | 853 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik |
Naturwissenschaften ► Physik / Astronomie ► Relativitätstheorie | |
ISBN-10 | 0-521-43976-0 / 0521439760 |
ISBN-13 | 978-0-521-43976-3 / 9780521439763 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich