Nicht aus der Schweiz? Besuchen Sie lehmanns.de
An Introduction to Dirac Operators on Manifolds - Jan Cnops

An Introduction to Dirac Operators on Manifolds

(Autor)

Buch | Softcover
211 Seiten
2012 | Softcover reprint of the original 1st ed. 2002
Springer-Verlag New York Inc.
978-1-4612-6596-2 (ISBN)
CHF 119,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Dirac operators play an important role in several domains of mathematics and physics, for example: index theory, elliptic pseudodifferential operators, electromagnetism, particle physics, and the representation theory of Lie groups.
Dirac operators play an important role in several domains of
mathematics and physics, for example: index theory, elliptic
pseudodifferential operators, electromagnetism, particle physics, and
the representation theory of Lie groups.
In this essentially self-contained work, the basic ideas underlying
the concept of Dirac operators are explored. Starting with Clifford
algebras and the fundamentals of differential geometry, the text
focuses on two main properties, namely, conformal invariance, which
determines the local behavior of the operator, and the unique
continuation property dominating its global behavior. Spin groups and
spinor bundles are covered, as well as the relations with their
classical counterparts, orthogonal groups and Clifford bundles.
The chapters on Clifford algebras and the fundamentals of
differential geometry can be used as an introduction to the above
topics, and are suitable for senior undergraduate and graduate
students. The other chapters are also accessible at this level so that
this text requires very little previous knowledge of the domains
covered. The reader will benefit, however, from some knowledge of
complex analysis, which gives the simplest example of a Dirac
operator. More advanced readers---mathematical physicists, physicists
and mathematicians from diverse areas---will appreciate the fresh
approach to the theory as well as the new results on boundary value
theory.

1 Clifford Algebras.- 1 Definition and basic properties.- 2 Dot and wedge products.- 3 Examples of Clifford algebras.- 4 Modules over Clifford algebras.- 5 Subgroups.- 2 Manifolds.- 1 Manifolds.- 2 Derivatives and differentials.- 3 The Spin group as a Lie group.- 4 Exterior derivatives and curvature.- 5 Spinors.- 6 Spinor fields.- 3 Dirac Operators.- 1 The vector derivative.- 2 The spinor Dirac operator.- 3 The Hodge—Dirac operator.- 4 Gradient, divergence and Laplace operators.- 4 Conformal Maps.- 1 Möbius transformations.- 2 Liouville’s Theorem.- 3 Conformal embeddings.- 4 Maps between manifolds.- 5 Unique Continuation and the Cauchy Kernel.- 1 The unique continuation property.- 2 Sobolev spaces.- 3 The Cauchy kernel.- 4 The case of Euclidean space.- 6 Boundary Values.- 1 The Cauchy transform.- 2 Boundary values and boundary spinors.- 3 Boundary spinors and integral operators.- Appendix. General manifolds.- 1 Vector bundles.- 2 Connections.- 3 Connections on SO(M).- 4 Spinor bundles.- List of Symbols.

Reihe/Serie Progress in Mathematical Physics ; 24
Zusatzinfo XI, 211 p.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
ISBN-10 1-4612-6596-7 / 1461265967
ISBN-13 978-1-4612-6596-2 / 9781461265962
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich