Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds (eBook)
XXVI, 602 Seiten
Springer New York (Verlag)
978-1-4614-6403-7 (ISBN)
In recent years, research in K3 surfaces and Calabi-Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics-in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi-Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated.
Unlike most other conferences, the 2011 Calabi-Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
In recent years, research in K3 surfaces and Calabi-Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics-in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi-Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi-Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
.-Preface.-Introduction.-List of Participants.- K3 and Enriques Surfaces (S. Kondo).- Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties (J.D. Lewis).- Two Lectures on the Arithmetic of K3 Surfaces (M. Schütt).- Modularity of Calabi–Yau Varieties (N. Yui).- Explicit Algebraic Coverings of a Pointed Torus (A. Anema, J. Top).- Elliptic Fibrations on the Modular Surface Associated to Γ1(8).- Universal Kummer Families over Shimura Curves (A. Besser, R. Livné).- Numerical Trivial Automorphisms of Enriques Surfaces in Arbitrary Characteristic (I.V. Dolgachev).- Picard-Fuchs Equations of Special One-Parameter Families of Invertible Polynomials (S. Gährs).- A Structure Theorem for Fibrations on Delsarte Surfaces (B. Heijne, R. Kloosterman).- Fourier–Mukai Partners and Polarised K3 Surfaces (K. Hulek, D. Ploog).- On a Family of K3 Surfaces with S4 Symmetry (D. Karp, J. Lewish, D. Moore, D. Skjorshammer, U. Whitcher).- K1ind of Elliptically Fibered K3 Surfaces (M. Kerr).- A Note About Special Cycles on Moduli Spaces of K3 Surfaces (S. Kudla).- Enriques Surfaces of Hutchinson–Göpel Type and Mathieu Automorphisms (S. Mukai, H. Ohashi).- Quartic K3 Surfaces and Cremona Transformations (K. Oguiso).- Invariants of Regular Models of the Product of Two Elliptical Curves at a Place of Multiplicative Reduction (C. Schoen).- Dynamics of Special Points on Intermediate Jacobians (X. Chen, J.D. Lewis).- Calabi–Yau Conifold Expansions (S. Cynk, D. van Straten).- Quadratic Twists of Rigid Calabi–Yau Threefolds over Q (F.Q. Gouvêa, I. Kimming, N. Yui).- Counting Sheaves on Calabi–Yau and Abelian Threefolds (M.G. Gulbrandsen).- The Serge Cubic and Borcherds Products (S. Kondo).- Quadi-Modular Forms Attached to Hodge Structures (H. Movasati).- The Zero Locus of the Infinitesimal Invariable (G. Pearlstein, Ch. Schnell).
Erscheint lt. Verlag | 12.6.2013 |
---|---|
Reihe/Serie | Fields Institute Communications | Fields Institute Communications |
Zusatzinfo | XXVI, 602 p. 41 illus., 16 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie | |
Technik | |
Schlagworte | $K3$ surfaces and Enriques surfaces • calabi-yau manifolds • cycles and subschemes • variation of Hodge structures |
ISBN-10 | 1-4614-6403-X / 146146403X |
ISBN-13 | 978-1-4614-6403-7 / 9781461464037 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich