Mathematical Fluid Mechanics
Springer Basel (Verlag)
978-3-7643-6593-6 (ISBN)
What Use for the Mathematical Theory of the Navier-Stokes Equations.- An Iterative Scheme for Steady Compressible Viscous Flow, Modified to Treat Large Potential Forces.- Raviart: Asymptotic Results for the Linear Stage of the Rayleigh Taylor Instability.- Recent Progress in the Mathematical Theory of Viscous Compressible Fluids.- Numerical Methods for Compressible Flow.- Instability of Steady Flows of an Ideal Incompressible Fluid.- Finite Volume Solution of 2D and 3D Euler and Navier-Stokes Equations.- On a Conjecture Concerning the Stokes Problem in Nonsmooth Domains.- On Well-Posedness of the Navier-Stokes Equations.- Anisotropie and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier-Stokes Equations.- List of Authors.
Erscheint lt. Verlag | 1.8.2001 |
---|---|
Reihe/Serie | Advances in Mathematical Fluid Mechanics |
Zusatzinfo | IX, 269 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 576 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | fluid mechanics • Functional Analysis • Mathematical Modeling • Navier-Stokes Equation • partial differential equation • Partial differential equations • Potential • Simulation • stability |
ISBN-10 | 3-7643-6593-5 / 3764365935 |
ISBN-13 | 978-3-7643-6593-6 / 9783764365936 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich