Multilayer Thin Films (eBook)
Wiley-VCH (Verlag)
978-3-527-64676-0 (ISBN)
Gero Decher is a Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and a member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines, including chemistry, materials science and biotechnology. Gero Decher has received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French 'Academie des Sciences' for Nanobiotechnology in 2009.
Joseph B. Schlenoff is Mandelkern Professor of Polymer Science of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. His work, supported by the National Science Foundation and the National Institutes of Health, among others, focuses on fundamental polymer science aspects of polyelectrolyte complexes and on their interactions with biological materials. In 2011, Joseph Schlenoff received a Gutenburg Chair at the University of Strasbourg.
Gero Decher is a Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and a member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines, including chemistry, materials science and biotechnology. Gero Decher has received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French "Académie des Sciences" for Nanobiotechnology in 2009. Joseph B. Schlenoff is Mandelkern Professor of Polymer Science of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. His work, supported by the National Science Foundation and the National Institutes of Health, among others, focuses on fundamental polymer science aspects of polyelectrolyte complexes and on their interactions with biological materials. In 2011, Joseph Schlenoff received a Gutenburg Chair at the University of Strasbourg.
VOLUME 1
LAYER-BY-LAYER ASSEMBLY (PUTTING MOLECULES TO WORK)
The Whole is More than the Sum of its Parts
From Self-Assembly to Directed Assembly
History and Development of the Layer-by-Layer Assembly Method
LbL-Assembly is the Synthesis of Fuzzy Supramolecular Objects
Reproducibility and Choice of Deposition Conditions
Monitoring Multilayer Build-up
Spray- and Spin-Assisted Multilayer Assembly
Recent Developments
Final Remarks
PART I: Preparation and Characterization
LAYER-BY-LAYER PROCESSED MULTILAYERS: CHALLENGES AND OPPORTUNITIES
Introduction
Fundamental Challenges and Opportunities
The Path Forward
LAYER-BY-LAYER ASSEMBLY: FROM CONVENTIONAL TO UNCONVENTIONAL METHODS
Introduction
Conventional LbL Methods
Unconventional LbL Methods
Summary and Outlook
NOVEL MULTILAYER THIN FILMS: HIERARCHIC LAYER-BY-LAYER (HI-LBL) ASSEMBLIES
Introduction
Hi-LbL for Multi-Cellular Models
Hi-LbL for Unusual Drug Delivery Modes
Hi-LbL for Sensors
Future Perspectives
LAYER-BY-LAYER ASSEMBLY USING HOST-GUEST INTERACTIONS
Introduction
Supramolecular Layer-by-Layer Assembly
3D Patterned Multilayer Assemblies on Surfaces
3D Supramolecular Nanoparticle Crystal Structures
Porous 3D Supramolecular Assemblies in Solution
Conclusions
LBL ASSEMBLIES USING VAN DER WAALS OR AFFINITY INTERACTIONS AND THEIR APPLICATIONS
Introduction
Stereospecific Template Polymerization of Methacrylates by Stereocomplex Formation in Nanoporous LbL Films
Preparation and Properties of Hollow Capsules Composed of Layer-by-Layer Polymer Films Constructed through van der Waals Interactions
Fabrication of Three-Dimensional Cellular Multilayers Using Layer-by-Layer Protein Nanofilms Constructed through Affinity Interaction
Conclusion
LAYER-BY-LAYER ASSEMBLY OF POLYMERIC COMPLEXES
Introduction
Concept of LbL Assembly of Polymeric Complexes
Structural Tailoring of LbL-Assembled Films of Polymeric Complexes
LbL-Assembled Functional Films of Polymeric Complexes
Summary
MAKING AQUEOUS NANOCOLLOIDS FROM LOW SOLUBILITY MATERIALS: LBL SHELLS ON NANOCORES
Introduction
Formation of Nanocores
Ultrasonication-Assisted LbL Assembly
Solvent-Assisted Precipitation Into Preformed LbL-Coated Soft Organic Nanoparticles
Washless (Titration) LbL Technique
Formation of LbL Shells on Nanocores
Drug Release Study
Conclusions
CELLULOSE FIBERS AND FIBRILS AS TEMPLATES FOR THE LAYER-BY-LAYER (LBL) TECHNOLOGY
Background
Formation of LbLs on Cellulose Fibers
The use of LbL to Improve Adhesion between Wood Fibers
The Use of LbL to Prepare Antibacterial Fibers
The use of NFC/CNC to Prepare Interactive Layers Using the LbL Approach
Conclusions
FREELY STANDING LBL FILMS
Introduction
Fabrication of Freely Standing Ultrathin LbL Films
Porous and Patterned Freely Standing LbL Films
Freely Standing LbL Films with Weak Interactions
NEUTRON REFLECTOMETRY AT POLYELECTROLYTE MULTILAYERS
Introduction
Neutron Reflectometry
Preparation Techniques for Polyelectrolyte Multilayers
Types of Polyelectrolytes
Preparation Parameters
Influence of External Fields After PEM Assembly
PEM as a Structural Unit
Conclusion and Outlook
POLYELECTROLYTE CONFORMATION IN AND STRUCTURE OF POLYELECTROLYTE MULTILAYERS
Introduction
Results
Conclusion and Outlook
CHARGE BALANCE AND TRANSPORT IN ION-PAIRED POLYELECTROLYTE MULTILAYERS
Introduction
Association Mechanism: Competitive Ion Pairing
Surface versus Bulk Polymer Charge
Polyelectrolyte Interdiffusion
Ion Transport Through Multilayers: the "Reluctant" Exchange Mechanism
Concluding Remarks
CONDUCTIVITY SPECTRA OF POLYELECTROLYTE MULTILAYERS REVEALING ION TRANSPORT PROCESSES
Introduction to Conductivity Studies of LbL Films
PEM Spectra: Overview
DC Conductivities of PEMs
Modeling of PEM Spectra
Ion Conduction in Polyelectrolyte Complexes
Scaling Principles in Conductivity Spectra: From Time - Temperature to Time - Humidity Superposition
RESPONSIVE LAYER-BY-LAYER ASSEMBLIES: DYNAMICS, STRUCTURE AND FUNCTION
Introduction
Chain Dynamics and Film Layering
Responsive Swellable LbL Fil Preface
Foreword
PART I: PREPARATION AND CHARACTERIZATION
Layer-by-Layer Processed Multilayers: Challenges and Opportunities
From Conventional to Unconventional Layer-by-Layer Assembly Methods
Hierarchic Multilayer Thin Films
Layer-by-Layer Assembly Using Host-Guest Interactions
LbL Assemblies Using van der Waals or Affinity Interaction and Their Applications
Layer-by-Layer Assembly of Polymeric Complexes
Making Aqueous Nanocolloids from Low Soluble Materials: LbL Shells on Nanocores
Cellulose Fibres and Fibrils as Templates for the Layer-by-Layer (LbL) Technology
Freely Standing LbL Films
Neutron Reflectrometry at Polyelectrolyte Multilayers
Molecular Conformation in and Structural Properties of Polyelectrolyte Multilayers
Ion Doping in Polyelectrolyte Multilayers
Conductivity Spectra of Polyelectrolyte Multilayers Revealing Ion Transport Processes
Layer-by-Layer Assemblies of pH- and Temperature-Responsive Polymers: Molecular Interactions, Exchange with Solution, Film Structure and Response
Tailoring Mechanics of Free-Standing Multilayers
Design and Translation of Nanolayer Assembly Processes: Electrochemical Energy to Programmable Pharmacies
Surface Initiated Polymerization and Layer-by-Layer Films
Quartz Crystal Resonator as a Tool for Following the Buildup of Polyelectrolyte Multilayers
PART II: APPLICATIONS
Electrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Applications and Materials Separation
Optoelectronic Materials and Devices Incorporating Polyelectrolyte Multilayers
Nanostructured Electrodes Assembled from Metal Nanoparticles and Quantum Dots in Polyelectrolytes
Advanced Nanoscale Composite Materials with Record Properties by Layer-by-Layer Assembly
Carbon Nanotube Based Assemblies
Nanoconfined Polyelectrolyte Multilayers: From Chain Crowding to Biological Applications
The Design of Polysaccharide Multilayers for Medical Applications
Polyelectrolyte Multilayer Films Based on Polysaccharides: From Physical Chemistry to the Control of Cell Differentiation
Diffusion of Nanoparticles in LbL Films as a New Tool to Produce Multifunctional Coatings
Biological Active Surfaces on Colloids by Means of the Layer-by-Layer Technology
A 'Multilayered' Approach to the Delivery of DNA: Exploiting the Structure of Polyelectrolyte Multilayers to Promote Surface-Mediated Cell Transfection and Multi-Agent Delivery
Designing LbL Capsules for Drug Loading and Release
Stimuli-Sensitive LbL Films for Controlled Delivery of Proteins and Drugs
Assembly of Multilayer Capsules for Drug Encapsulation and Controlled Release
Engineered Thin Films and Capsules for Biomedical Applications
Assembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation
Stimuli-Responsive LbL Capsules
Domain-Containing Polyelectrolyte Films for the Entrapment of Active Compounds
Ion Transport through Polyelectrolyte Multilayers
Remote Release from Multilayer Capsules and Films
Controlled Architectures in LbL Films for Sensing and Biosensing
Patterned Multilayer Systems and Directed Self-Assembly of Functional Nano-Bio Materials
Electrochemically Active LbL Multilayer Films: From Biosensors to Nanocatalysts
Multilayer Polyelectrolyte Assembly in Feedback Active Coatings and Films
List of Contributors
Rigoberto C. Advincula
University of Houston
Departments of Chemistry and Chemical and Biomolecular Engineering
136 Fleming Building
Houston, TX 77204-5003
USA
Hioharu Ajiro
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Mitsuro Akashi
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Maria N. Antipina
Agency for Science, Technology and Research (A*STAR)
Institute of Materials Research and Engineering
3 Research Link
Singapore 117602
Singapore
Jun-ichi Anzai
Tohoku University
Graduate School of Pharmaceutical Sciences
Aramaki, Aoba-ku
Sendai 980-8578
Japan
Pedro H.B. Aoki
Universidade Estadual Paulista (UNESP)
Faculdade de Ciências e Tecnologia
19060-900 Presidente Prudente, SP
Brazil
Katsuhiko Ariga
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
and
JST
CREST
1-1 Namiki
Tsukuba 305-0044
Japan
Jianhao Bai
National University of Singapore
Division of Bioengineering
Singapore 117576
Singapore
Vincent Ball
Centre de Recherche Public Henri Tudor
Department of Advanced Materials and Structures
66 rue de Luxembourg
4002 Esch-sur-Alzette
Luxembourg
Sebastian Beyer
National University of Singapore
Division of Bioengineering
Singapore 117576
Singapore
and
National University of Singapore
Graduate School for Integrative Sciences and Engineering
Singapore 11756
Singapore
Stephan Block
Ernst-Moritz-Arndt Universität
Institut für Physik
Felix-Hausdorff-Str. 6
17487 Greifswald
Germany
Thomas Boudou
Grenoble Institute of Technology and Centre National de la Recherche Scientifique
CNRS UMR 5628, LMGP, MINATEC
3 Parvis Louis Néel
38016 Grenoble
France
Merlin L. Bruening
Michigan State University
Department of Chemistry
East Lansing, MI 48824
USA
Cédric C. Buron
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Ernesto J. Calvo
Universidad de Buenos Aires
Departamento de Química Inorgánica
Electrochemistry Group, INQUIMAE
Pabellón 2, Ciudad Universitária
Buenos Aires 1428
Argentina
Frank Caruso
The University of Melbourne
Department of Chemical and Biomolecular Engineering
Building 173
Melbourne, Victoria 3010
Australia
Chloe Chevigny
TU Berlin
Department of Chemistry
Straße des 17. Juni 124
10623 Berlin
Germany
Robert E. Cohen
Massachusetts Institute of Technology
Departments of Materials Science and Engineering and Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Carlos J.L. Constantino
Universidade Estadual Paulista (UNESP)
Faculdade de Ciências e Tecnologia
19060-900 Presidente Prudente, SP
Brazil
Cornelia Cramer
University of Münster
Institute of Physical Chemistry
Corrensstr. 28/30
48149 Münster
Germany
Thomas Crouzier
Grenoble Institute of Technology and Centre National de la Recherche Scientifique
CNRS UMR 5628, LMGP, MINATEC
3 Parvis Louis Néel
38016 Grenoble
France
Yue Cui
Chinese Academy of Sciences
Institute of Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS)
Zhongguancun North First Street 2
Beijing 100190
China
Chalongrat Daengngam
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Bruno G. De Geest
Ghent University
Department of Pharmaceutics
Harelbekestraat 72
9000 Ghent
Belgium
Sophie Demoustier-Champagne
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Stefaan C. De Smedt
Ghent University
Department of Pharmaceutics
Harelbekestraat 72
9000 Ghent
Belgium
Wang Dong
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Ashraf El-Hashani
University of Cologne
Department of Chemistry
Luxemburger Str. 116
50939 Köln
Germany
Nicel Estillore
University of Houston
Departments of Chemistry and Chemical and Biomolecular Engineering
136 Fleming Building
Houston, TX 77204-5003
USA
Jinbo Fei
Chinese Academy of Sciences
Institute of Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS)
Zhongguancun North First Street 2
Beijing 100190
China
Andreas Fery
University of Bayreuth
Department of Physical Chemistry II
95440 Bayreuth
Germany
Karine Glinel
Université de Rouen, CNRS
Laboratoire Polymères, Biopolymères, Surfaces
Bd M. de Broglie
7681 Mont Saint Aignan
France
and
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Jaime C. Grunlan
Texas A&M University
Department of Mechanical Engineering
College Station, TX 77843-3123
USA
Aurélie Guyomard
Université de Rouen, CNRS
Laboratoire Polymères, Biopolymères, Surfaces
Bd M. de Broglie
7681 Mont Saint Aignan
France
Lara Halaoui
American University of Beirut
Department of Chemistry
Beirut
Lebanon
Paula T. Hammond
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Qiang He
Harbin Institute of Technology
Micro/Nano Technology Research Centre
Harbin 150080
China
Randy Heflin
Virginia Polytechnic Institute and State University
Department of Physics
Robeson Hall (0435)
Blacksburg, VA 24061-0435
USA
Christiane A. Helm
Ernst-Moritz-Arndt Universität
Institut für Physik
Felix-Hausdorff-Str. 6
17487 Greifswald
Germany
Jonathan P. Hill
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
and
JST
CREST
1-1 Namiki
Tsukuba 305-0044
Japan
Kristina Hoffmann
University of Cologne
Department of Chemistry
Luxemburger Str. 116
50939 Köln
Germany
Jurriaan Huskens
University of Twente
MESA+ Institute for Nanotechnology
Molecular Nanofabrication Group
7500 AE Enschede
The Netherlands
Md Nasim Hyder
Massachusetts Institute of Technology
Department of Chemical Engineering
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Qingmin Ji
National Institute for Materials Science (NIMS)
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
1-1 Namiki
Tsukuba 305-0044
Japan
Chaoyang Jiang
University of South Dakota
Chemistry Department
414 East Clark Street
Vermillion, SD 57069
USA
Alain M. Jonas
Université Catholique de Louvain
Institute of Condensed Matter and Nanosciences – Bio & Soft Matter
Croix du Sud 1
1348 Louvain-la-Neuve
Belgium
Jouko Kankare
University of Turku
Department of Chemistry
Laboratory of Materials Chemistry and Chemical Analysis
20014 Turku
Finland
Toshiyuki Kida
Osaka University
Department of Applied Chemistry
2-1 Yamada-oka
Suita, Osaka 565-0871
Japan
Maxim V. Kiryukhin
Agency for Science,...
| Erscheint lt. Verlag | 7.5.2012 |
|---|---|
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Chemie |
| Technik ► Maschinenbau | |
| Schlagworte | anyone • Assembly • Beschichtung • bio • Book • Chemie • Chemistry • components • Comprehensive • Dünne Schicht • Dünne Schichten, Oberflächen u. Grenzflächen • Dünne Schicht • Dünne Schichten, Oberflächen u. Grenzflächen • Edition • Essential • FI • fi eld • Field • Herein • hybrid • layerbylayer • LMS • Materials • Materials Science • Materialwissenschaften • Nanomaterialien • nanomaterials • nanoscale • Nanotechnologie • nanotechnology • Physical Chemistry • Physikalische Chemie • Polymer Science & Technology • Polymersynthese • polymer synthesis • Polymerwissenschaft u. -technologie • provided • Researchers • result • scientists • selfassembly • Summary • Surfaces • Thin Films, Surfaces & Interfaces • two • Volumes |
| ISBN-10 | 3-527-64676-0 / 3527646760 |
| ISBN-13 | 978-3-527-64676-0 / 9783527646760 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich