Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mathematical Topics in Population Genetics -

Mathematical Topics in Population Genetics

Ken-Ichi Kojima (Herausgeber)

Buch | Softcover
X, 400 Seiten
2012 | 1. Softcover reprint of the original 1st ed. 1970
Springer Berlin (Verlag)
978-3-642-46246-7 (ISBN)
CHF 74,85 inkl. MwSt
A basic method of analyzing particulate gene systems is the proba bilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathe matics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis over came "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, prob ably for the first time, conducted by K. Mather and his associates and Panse in the 1940's.

Random Drift and the Shifting Balance Theory of Evolution.- Changes in Mean Fitness under Natural Selection.- Models and Analyses of Dispersal Patterns.- Avoidance and Rate of Inbreeding.- Genetic Loads and the Cost of Natural Selection.- Stochastic Processes in Population Genetics, with Special Reference to Distribution of Gene Frequencies and Probability of Gene Fixation.- Theory of Limits to Selection with Line Crossing.- A Theory of Limits in Artificial Selection with Many Linked Loci.- The Evolution of Dominance.- Survival of Mutant Genes as a Branching Process.- The Incomplete Binomial Distribution.- Evolutionary Significance of Linkage and Epistasis.- Fitness and Optimization.

Erscheint lt. Verlag 21.3.2012
Reihe/Serie Biomathematics
Zusatzinfo X, 400 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 627 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Biologie Evolution
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Evolution • genes • Genetics • Mathematica • Mathematical Statistics • Mathematics • Mutant • Optimization • Population
ISBN-10 3-642-46246-4 / 3642462464
ISBN-13 978-3-642-46246-7 / 9783642462467
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90