The Recursion Method and Its Applications
Springer Berlin (Verlag)
978-3-642-82446-3 (ISBN)
I Introduction.- Why Recur?.- The Recursive Solution of Schroedinger's Equation.- II Asymptotic Behaviour.- Asymptotic Behaviour of Continued Fraction Coefficients Related to Singularities of the Weight Function.- Band Gaps and Asymptotic Behaviour of Continued Fraction Coefficients.- Computing Greenians: Quadrature and Termination.- Application of Linear Prediction for Extrapolating Recursion Coefficients.- III Related Methods.- On a Generalized-Moments Method.- The Equation of Motion Method.- Use of Cyclic Matrices to Obtain Analytic Expressions for Crystals.- IV Solid State Applications.- Continued Fractions and Perturbation Theory: Application to Tight Binding Systems.- Response Functions and Interatomic Forces.- The Recursion Method with a Non-Orthogonal Basis.- V Lanczos Method Applications.- Hamiltonian Eigenvalues for Lattice Gauge Theories.- The Lanczos Method in Lattice Gauge Theories.- A Dedicated Lanczos Computer for Nuclear Structure Calculations.- VI Conference Summary.- Conference Summary.- Index of Contributors.
Erscheint lt. Verlag | 15.12.2011 |
---|---|
Reihe/Serie | Springer Series in Solid-State Sciences |
Zusatzinfo | VIII, 184 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 299 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Schlagworte | algorithms • Applications • Crystal • Development • eigenvalue • hamiltonian • paper • PET • Physics • Solid state physics • Solution • Structure |
ISBN-10 | 3-642-82446-3 / 3642824463 |
ISBN-13 | 978-3-642-82446-3 / 9783642824463 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich