Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Quantum Mechanical Few-Body Problem - W. Glöckle

The Quantum Mechanical Few-Body Problem

(Autor)

Buch | Softcover
VIII, 200 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1983
Springer Berlin (Verlag)
978-3-642-82083-0 (ISBN)
CHF 74,85 inkl. MwSt
Few-body systems are both technically relatively simple and physically non trivial enough to test theories quantitatively. For instance the He-atom played historically an important role in verifying predictions of QED. A similar role is contributed nowadays to the three-nucleon system as a testing ground far nuclear dynamics and maybe in the near future to few-quark systems. They are also often the basic building blocks for many-body systems like to some extent nuclei, where the real many-body aspect is not the dominant feature. The presentation of the subject given here is based on lectures held at var ious places in the last ten years. The selection of the topics is certainly subjec tive and influenced by my own research interests. The content of the book is simply organized according to the increasing nu mb er of particles treated. Be cause of its conceptual simplicity single particle motion is very suitable for in troducing the basic elements of scattering theory. Using these elements the two-body system is treated for the specific case of two nucleons, which is of great importance in the study of the nuclear interaction. Great space is devoted to the less trivial few-body system consisting of three particles. Again physical examples are taken solely from nuclear physics. Finally the four particle system is discussed so as to familiarize the reader with the techniques required for the formulations of n-bodies in general.

1. Elements of Potential Scattering Theory.- 1.1 The Möller Wave Operator.- 1.2 The Cross Section.- 1.3 Resolvent Operators and Green's Functions.- 1.4 Asymptotic Behaviour of the Scattering Wave Function.- 1.5 The S-, T-, and K-Matrices.- 1.6 S-Matrix Pole Trajectories.- 1.7 Criteria for Divergence or Convergence of the Neumann Series.- 2. Scattering Theory for the Two-Nucleon System.- 2.1 Density Matrices for the Initial and Final State.- 2.2 The General Spin Observable.- 2.3 The Wolfenstein Parametrisation of the Scattering Amplitude.- 2.4 Examples for Spin Observables.- 2.5 Partial-Wave Decomposition.- 2.6 Standard S-Matrix Representations.- 2.7 Numerical Methods.- 3. Three Interacting Particles.- 3.1 Channels.- 3.2 The Fundamental Set of Lippmann-Schwinger Equations.- 3.3 Faddeev Equations and Other Coupling Schemes.- 3.4 Transition Operators.- 3.5 Examples of Numerical Studies in Few-Nucleon Scattering.- 3.6 The Three-Nucleon Bound State.- 4. Four Interacting Particles.- 4.1 The Fundamental Set of Lippmann-Schwinger Equations.- 4.2 Coupled Equations in Dummy Variables.- 4.3 Yakubovsky Equations.- 4.4 AGS-Equations for Transition Operators.- 4.5 Remarks on Equations of Higher Connectivity.- References.- Reviews, Monographies, and Conferences.

Erscheint lt. Verlag 28.12.2011
Reihe/Serie Theoretical and Mathematical Physics
Zusatzinfo VIII, 200 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 244 mm
Gewicht 374 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Body • N-Körperproblem • nuclear physics • Quantenmechanik • scattering theory
ISBN-10 3-642-82083-2 / 3642820832
ISBN-13 978-3-642-82083-0 / 9783642820830
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 109,95