Introduction to Mathematical Physics
Methods & Concepts
Seiten
2013
|
2nd Revised edition
Oxford University Press (Verlag)
978-0-19-964139-0 (ISBN)
Oxford University Press (Verlag)
978-0-19-964139-0 (ISBN)
Introduction to Mathematical Physics explains why and how mathematics is needed in describing physical events in space. It helps physics undergraduates master the mathematical tools needed in physics core courses. It contains advanced topics for graduate students, short tutorials on basic mathematics, and an appendix on Mathematica.
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.
Wong is a theoretical physicist educated at UCLA and Harvard. He has worked in Copenhagen, Princeton, Oxford, and Saclay (near Paris). He has been at UCLA since 1969. He was a Sloan research Fellow, and is a fellow of the American Physical Society. His main interest is in theoretical physics.
APPENDIX A: TUTORIALS; APPENDIX B: MATHEMATICA AND OTHER COMPUTER ALGEBRA SYSTEMS; APPENDIX C: COMPUTER ALGEBRA (CA) WITH MATHEMATICA
Erscheint lt. Verlag | 24.1.2013 |
---|---|
Zusatzinfo | 102 b/w illustrations |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 182 x 248 mm |
Gewicht | 1584 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
ISBN-10 | 0-19-964139-0 / 0199641390 |
ISBN-13 | 978-0-19-964139-0 / 9780199641390 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre
Buch | Hardcover (2021)
Hanser, Carl (Verlag)
CHF 41,95