Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Weak Convergence and Empirical Processes - Aad van der Vaart, Jon Wellner

Weak Convergence and Empirical Processes

With Applications to Statistics
Buch | Hardcover
510 Seiten
2000 | 1st ed. 1996. Corr. 2nd printing 2000
Springer-Verlag New York Inc.
978-0-387-94640-5 (ISBN)
CHF 329,50 inkl. MwSt
  • Titel erscheint in neuer Auflage
  • Artikel merken
This book explores weak convergence theory and empirical processes and their applications to many applications in statistics. Part two offers the theory of empirical processes in a form accessible to statisticians and probabilists.
This book explores weak convergence theory and empirical processes and their applications to many applications in statistics. Part one reviews stochastic convergence in its various forms. Part two offers the theory of empirical processes in a form accessible to statisticians and probabilists. Part three covers a range of topics demonstrating the applicability of the theory to key questions such as measures of goodness of fit and the bootstrap.

1.1. Introduction.- 1.2. Outer Integrals and Measurable Majorants.- 1.3. Weak Convergence.- 1.4. Product Spaces.- 1.5. Spaces of Bounded Functions.- 1.6. Spaces of Locally Bounded Functions.- 1.7. The Ball Sigma-Field and Measurability of Suprema.- 1.8. Hilbert Spaces.- 1.9. Convergence: Almost Surely and in Probability.- 1.10. Convergence: Weak, Almost Uniform, and in Probability.- 1.11. Refinements.- 1.12. Uniformity and Metrization.- 2.1. Introduction.- 2.2. Maximal Inequalities and Covering Numbers.- 2.3. Symmetrization and Measurability.- 2.4. Glivenko-Cantelli Theorems.- 2.5. Donsker Theorems.- 2.6. Uniform Entropy Numbers.- 2.7. Bracketing Numbers.- 2.8. Uniformity in the Underlying Distribution.- 2.9. Multiplier Central Limit Theorems.- 2.10. Permanence of the Donsker Property.- 2.11. The Central Limit Theorem for Processes.- 2.12. Partial-Sum Processes.- 2.13. Other Donsker Classes.- 2.14. Tail Bounds.- 3.1. Introduction.- 3.2. M-Estimators.- 3.3. Z-Estimators.- 3.4. Rates of Convergence.- 3.5. Random Sample Size, Poissonization and Kac Processes.- 3.6. The Bootstrap.- 3.7. The Two-Sample Problem.- 3.8. Independence Empirical Processes.- 3.9. The Delta-Method.- 3.10. Contiguity.- 3.11. Convolution and Minimax Theorems.- A. Appendix.- A.1. Inequalities.- A.2. Gaussian Processes.- A.2.1. Inequalities and Gaussian Comparison.- A.2.2. Exponential Bounds.- A.2.3. Majorizing Measures.- A.2.4. Further Results.- A.3. Rademacher Processes.- A.4. Isoperimetric Inequalities for Product Measures.- A.5. Some Limit Theorems.- A.6. More Inequalities.- A.6.1. Binomial Random Variables.- A.6.2. Multinomial Random Vectors.- A.6.3. Rademacher Sums.- Notes.- References.- Author Index.- List of Symbols.

Reihe/Serie Springer Series in Statistics
Zusatzinfo XVI, 510 p.
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 2030 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
ISBN-10 0-387-94640-3 / 0387946403
ISBN-13 978-0-387-94640-5 / 9780387946405
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95