Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nonlinear Differential Equations of Monotone Types in Banach Spaces - Viorel Barbu

Nonlinear Differential Equations of Monotone Types in Banach Spaces

(Autor)

Buch | Softcover
272 Seiten
2012
Springer-Verlag New York Inc.
978-1-4614-2557-1 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.
In the last decades, functional methods played an increasing role in the qualita tive theory of partial differential equations. The spectral methods and theory of C 0 semigroups of linear operators as well as Leray-Schauder degree theory, ?xed point theorems, and theory of maximal monotone nonlinear operators are now essential functional tools for the treatment of linear and nonlinear boundary value problems associated with partial differential equations. An important step was the extension in the early seventies of the nonlinear dy namics of accretive (dissipative) type of the Hille-Yosida theory of C semigroups 0 of linear continuous operators. The main achievement was that the Cauchy problem associated with nonlinear m accretive operators in Banach spaces is well posed and the corresponding dynamic is expressed by the Peano exponential formula from ?nite dimensional theory. This fundamental result is the corner stone of the whole existence theory of nonlinear in?nite dynamics of dissipative type and its contri bution to the development of the modern theory of nonlinear partial differential equations cannot be underestimated.

Fundamental Functional Analysis.- Maximal Monotone Operators in Banach Spaces.- Accretive Nonlinear Operators in Banach Spaces.- The Cauchy Problem in Banach Spaces.- Existence Theory of Nonlinear Dissipative Dynamics.

Erscheint lt. Verlag 3.5.2012
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo X, 272 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie
Schlagworte accretive operator • Banach • Banach-Räume • Barbu • Cauchy problem • elliptic equation • Equations • maximal monotone operator • Monotone • Nichtlineare Analysis • Nonlinear
ISBN-10 1-4614-2557-3 / 1461425573
ISBN-13 978-1-4614-2557-1 / 9781461425571
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95