Complex Dynamics of Glass-Forming Liquids
A Mode-Coupling Theory
Seiten
2012
Oxford University Press (Verlag)
978-0-19-965614-1 (ISBN)
Oxford University Press (Verlag)
978-0-19-965614-1 (ISBN)
Amorphous condensed matter can exhibit complex motions on time scales which extend up to those relevant for the functioning of biomaterials. The book presents the derivation of a microscopic theory for amorphous matter, which exhibits the evolution of such complex motions as a new paradigm of strongly interacting particle systems.
The book contains the only available complete presentation of the mode-coupling theory (MCT) of complex dynamics of glass-forming liquids, dense polymer melts, and colloidal suspensions. It describes in a self-contained manner the derivation of the MCT equations of motion and explains that the latter define a model for a statistical description of non-linear dynamics.
It is shown that the equations of motion exhibit bifurcation singularities, which imply the evolution of dynamical scenarios different from those studied in other non-linear dynamics theories. The essence of the scenarios is explained by the asymptotic solution theory of the equations of motion. The leading-order results deal with scaling laws and the range of validity of these general laws is obtained by the derivation of the leading-correction results.
Comparisons of numerical solutions of the MCT equations of motion with the analytic results of the asymptotic analysis demonstrate various facets of the MCT dynamics. Some comparisons of MCT results with data are used to show the relevance of MCT for the discussion of amorphous matter dynamics.
The book contains the only available complete presentation of the mode-coupling theory (MCT) of complex dynamics of glass-forming liquids, dense polymer melts, and colloidal suspensions. It describes in a self-contained manner the derivation of the MCT equations of motion and explains that the latter define a model for a statistical description of non-linear dynamics.
It is shown that the equations of motion exhibit bifurcation singularities, which imply the evolution of dynamical scenarios different from those studied in other non-linear dynamics theories. The essence of the scenarios is explained by the asymptotic solution theory of the equations of motion. The leading-order results deal with scaling laws and the range of validity of these general laws is obtained by the derivation of the leading-correction results.
Comparisons of numerical solutions of the MCT equations of motion with the analytic results of the asymptotic analysis demonstrate various facets of the MCT dynamics. Some comparisons of MCT results with data are used to show the relevance of MCT for the discussion of amorphous matter dynamics.
Professor Wolfgang Götze, Department of Physics, Technical University of Munich, Germany.
1. Glassy dynamics of liquids ; 2. Correlation functions ; 3. Elements of liquid dynamics ; 4. Foundations of the mode-coupling theory ; 5. Extensions of the mode-coupling theory ; 6. Asymptotic relaxation laws ; Appendices
Erscheint lt. Verlag | 5.7.2012 |
---|---|
Reihe/Serie | International Series of Monographs on Physics ; 143 |
Zusatzinfo | 119 b/w line drawings |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 171 x 238 mm |
Gewicht | 996 g |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
ISBN-10 | 0-19-965614-2 / 0199656142 |
ISBN-13 | 978-0-19-965614-1 / 9780199656141 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90
Set aus Lehrbuch und Arbeitsbuch
Buch | Hardcover (2022)
Wiley-VCH (Verlag)
CHF 149,95
Thermodynamik | Kinetik | Elektrochemie
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 83,90