Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Scanning Probe Microscopy in Nanoscience and Nanotechnology (eBook)

Bharat Bhushan (Herausgeber)

eBook Download: PDF
2010 | 2010
XXX, 956 Seiten
Springer Berlin (Verlag)
978-3-642-03535-7 (ISBN)

Lese- und Medienproben

Scanning Probe Microscopy in Nanoscience and Nanotechnology -
Systemvoraussetzungen
287,83 inkl. MwSt
(CHF 279,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the physical and technical foundation of the state-of-the-art in applied scanning probe techniques. It constitutes a comprehensive overview of SPM applications. The chapters are written by leading researchers and application scientists.

Scanning Probe Microscopy in Nanoscience and Nanotechnology 4
Part I Scanning Probe Microscopy Techniques 32
1 Dynamic Force Microscopy and Spectroscopy Using the Frequency-Modulation Technique in Air and Liquids 33
1.1 Introduction 33
1.2 Basic Principles of the FM Technique 34
1.2.1 The Equation of Motion 34
1.2.2 Oscillation Behavior of a Self-Driven Cantilever 36
1.2.3 Theory of FM Mode Including Tip–Sample Forces 37
1.2.4 Measuring the Tip–Sample Interaction Force 39
1.2.5 Experimental Comparison of the FM Mode with the Conventional Amplitude-Modulation-mode in Air 41
1.3 Mapping of the Tip–Sample Interactions on DPPC Monolayers in Ambient Conditions 42
1.4 Force Spectroscopy of Single Dextran Monomers in Liquid 45
1.5 Summary 48
Acknowledgements 49
References 49
2 Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy 52
2.1 Introduction 53
2.2 Principles of Optical Trapping 53
2.2.1 Theoretical Background 53
2.3 Experimental Implementation 58
2.3.1 Optical Tweezers Set-up 58
2.3.2 Brownian Motion and Force Sensing 60
2.3.3 Optical Trapping of Linear Nanostructures 62
2.4 Photonic Force Microscopy 68
2.4.1 Bio-Nano-Imaging 68
2.4.2 Bio-Force Sensing at the Nanoscale 71
2.5 Raman Tweezers 74
2.5.1 The Raman Effect 74
2.5.2 Experimental Configuration 75
2.5.3 Applications 77
2.6 Conclusions 82
References 82
3 Polarization-Sensitive Tip-Enhanced Raman Scattering 86
3.1 Introduction 86
3.2 Tip-Enhanced Raman Spectroscopy 87
3.2.1 Concept and Advantages 87
3.2.2 Experimental Implementations of TERS with Side Illumination Optics 89
3.2.3 Probes for Tip-Enhanced Raman Spectroscopy 90
3.3 Polarized Raman Scattering from Cubic Crystals 93
3.3.1 Model for Backscattering Raman Emission in c-Silicon 93
3.3.2 Selection Rules 96
3.4 Tip-Enhanced Field Modeling 96
3.4.1 Phenomenological Model 96
3.4.2 Numerical Models and Results 99
3.5 Depolarization of Light Scattered by Metallic Tips 102
3.6 Polarized Tip-Enhanced Raman Spectroscopy of Silicon Crystals 104
3.6.1 Background Suppression 104
3.6.2 Selective Enhancement of the Raman Modes Induced by Depolarization 109
3.6.3 Evaluation of the Field Enhancement Factor 113
3.7 Conclusions 114
References 115
4 Electrostatic Force Microscopy and Kelvin Force Microscopy as a Probe of the Electrostatic and Electronic Properties of Carbon Nanotubes 118
4.1 Introduction 118
4.2 Electrostatic Measurements at the Nanometer Scale 119
4.2.1 Electrostatic Force Microscopy 119
Principle 119
Phase Shifts Versus Frequency Shifts 120
Capacitive Versus Charge EFM Signals 121
Modulated (1/2) EFM/FM-KFM 122
4.2.2 Kelvin Force Microscopy 122
Principle of Amplitude Modulation Kelvin Force Microscopy 122
Open-Loop KFM or ac-EFM 123
4.2.3 Lateral Resolution in EFM and KFM 123
Side Capacitance Effects 123
Carbon Nanotube Tip Probes 125
4.3 Electrostatic Imaging of Carbon Nanotubes 126
4.3.1 Capacitive Imaging of Carbon Nanotubes in Insulating Layers 127
4.3.2 EFM Imaging of Carbon Nanotubes and DNA 129
4.3.3 Imaging of Native Charges in Carbon Nanotube Loops 131
4.4 Charge Injection Experiments in Carbon Nanotubes 132
4.4.1 Charge Injection and Detection Techniques 132
4.4.2 Experimental Illustration of EFM Signals 133
Abrupt Discharging Processes in Carbon Nanotubes 135
Charge Emission to the Oxide 137
Continuous Discharge Processes 138
Nanotube Charge Versus Oxide Charge 139
4.4.3 Inner-Shell Charging of CNTs 141
4.4.4 Electrostatic Interactions in SWCNTs 144
4.5 Probing the Band Structure of Nanotubes on Insulators 145
4.5.1 Imaging the Semiconductor/Metal Character of Carbon Nanotubes 145
4.5.2 Imaging the Density of States of Carbon Nanotubes 147
4.6 KFM Studies of Nanotube Devices 148
4.6.1 Charge Transfers at Nanotube–Metal Interfaces 148
4.6.2 Diffusive and Ballistic Transport in Carbon Nanotubes 150
4.6.3 Kelvin Force Microscopy of CNTFETs 150
Backgate Operation of CNTFETs 150
KFM Determination of the lever arm of a CNTFET 151
Hysteretic Behavior of CNTFETs and Surface Charges 153
4.7 Conclusion 154
Acknowledgement 155
References 155
5 Carbon Nanotube Atomic Force Microscopywith Applications to Biology and Electronics 158
5.1 Carbon Nanotube Introduction 158
5.2 Carbon Nanotube Synthesis 163
5.3 Fabrication of Carbon Nanotube Atomic Force Microscopy Probes 164
5.3.1 Fabrication of Carbon Nanotube Atomic Force Microscopy Probes by Gluing 164
5.3.2 Mechanical Attachment in Scanning Electron Microscopy 164
5.3.3 Fabrication of Carbon Nanotube Atomic Force Microscopy Probes by In Situ Pick-Up 166
5.3.4 Miscellaneous Methods for Post-Growth Attachment of Carbon Nanotube to Atomic Force Microscopy Tips 166
5.3.5 Metal Catalyst-Assisted Direct-Growth of Carbon Nanotube Atomic Force Microscopy Probes 166
5.3.6 Post-Growth Attachment is Currently the Most Optimal Fabrication Process 168
5.4 Characteristics and Characterization of Carbon Nanotube Atomic Force Microscopy Tips 170
5.5 Applications of Carbon Nanotube Scanning Probe Microscopy 177
5.5.1 Functionalization of Carbon Nanotube Tips for Chemical Force Microscopy 177
5.5.2 Carbon Nanotube Friction Force Microscopy 181
5.5.3 Carbon Nanotube Electric Force Microscopy 181
5.5.4 Carbon Nanotube Scanning Tunneling Microscopy 183
5.5.5 Carbon Nanotube Magnetic Force Microscopy 184
5.5.6 Carbon Nanotube Scanning Near-Field Optical Microscopy 187
5.5.7 Biological Applications of Carbon Nanotube Atomic Force Microscopy 188
References 194
6 Novel Strategies to Probe the Fluid Properties and Revealing its Hidden Elasticity 198
6.1 Introduction 199
6.2 Basic Theoretical Considerations: Conciliating Simple Liquid Approach to the Viscoelasticity Theory? 201
6.2.1 Simple Liquid Description 201
6.2.2 The Viscoelastic Approach 202
6.3 Conventional Procedure to Determine the Dynamic Properties of Fluids 203
6.3.1 Linear Rheology 203
6.3.2 Non-Linear Rheology 205
6.4 Unpredicted Phenomena and Unsolved Questions: Flow Instabilities, Non-Linearities, Shear Induced Transitions, Extra-Long Relaxation Times, Elasticity in the Liquid State 206
6.5 From Macro to Micro and Nanofluidics 210
6.6 Analysis of the Viscoelasticity Scanning Method 212
6.7 The Question of the Boundary Conditions: Surface Effects, Wetting, and Slippage 215
6.8 Novel Description of Conventional Fluids: from Viscous Liquids, Glass Formers to Entangled Polymers. Experiments in Narrow Gap Geometry: Extracting the Shear Elasticity in Viscous Fluids 216
6.9 Tribology Meets Rheology. Novel Methods for the Determination of Bulk Dynamic Properties of a Soft Solid or a Fluidic Material 217
6.10 Elasticity and Dimensionality in Fluids 221
6.11 General Summary and Perspectives 221
References 223
7 Combining Atomic Force Microscopy and Depth-Sensing Instruments for the Nanometer-Scale Mechanical Characterization of Soft Matter 227
7.1 Introduction 227
7.2 Determining Elastic Modulus of Compliant Materials from Nanoindentations 229
7.3 Determining Elastic Modulus of Compliant Materials from Nanoindentations 234
7.4 Modulus Estimate of a Challenging Set of Samples 239
References 248
8 Static and Dynamic Structural Modeling Analysis of Atomic Force Microscope 252
8.1 Introduction 253
8.2 Working Principle and Modes 254
8.3 Statics of Atomic Force Microscope Cantilever: Effective Stiffness Approach 257
8.4 Electrostatic, Surface and Residual Stress Influence on the Atomic Force Microscope Initial Deflection 261
8.5 Modeling Tip–Sample Contact 264
8.6 Non-Contact Atomic Force Microscope Dynamics: Damping and Influence of Tip–Surface Interaction 269
8.7 Dynamics of Intermittent Contact 275
8.8 Summary 279
Acknowledgement 280
References 280
9 Experimental Methods for the Calibration of Lateral Forces in Atomic Force Microscopy 285
9.1 Introduction 286
9.2 Basic Definitions and Relationships 290
9.2.1 The Calibration Constants Involved in a Lateral Force Measurement 290
9.2.2 Basic Relationships Involving the Calibration Constants 292
9.2.3 The Lateral and the Normal Spring Constant of a Rectangular CL 294
9.2.4 The Case of In-Plane Deformations 296
9.3 Calibration of the Lateral Sensitivity of the PSD 297
9.3.1 Available Methods 297
Mirrored Substrate Method 297
Geometrical Optics Method 299
Lateral FDC Method 300
Scanning Across a Vertical Step 301
9.3.2 Optical Crosstalk 301
9.4 Methods Relying on a Scanning Motion 303
9.4.1 The Wedge Method 303
9.4.2 Methods Involving the Normal Spring Constant 309
9.5 Methods Relying on a Force Balance upon Contact with a Rigid Structure 310
9.5.1 Normal Loading upon Contact with a Sloped Substrate 310
9.5.2 Normal Loading with the Contact Point off the CL Long Axis 312
9.5.3 Lateral Loading of a Horizontal Surface 314
9.5.4 Lateral Loading of a Vertical Surface 316
9.5.5 Mechanical Crosstalk 316
Considering the Effect of an Offset in the Tip Position 317
Considering the Effect of an Offset in the Position of the Shear Centre 318
Eliminating the Mechanical Crosstalk Effect by Novel Design Concepts 320
9.6 Methods Relying on a Force Balance Upon Contact with a Compliant Structure 320
9.6.1 The Case of a Vertical Reference Beam 320
9.6.2 The Case of a Horizontal Reference Beam 324
9.6.3 The Case of a Mechanically Suspended Platform 325
9.6.4 The Case of a Magnetically Suspended Platform 328
9.7 Methods Relying on Torsional Resonancesof the CL 330
9.8 Discussion 332
9.9 Concluding Remarks 344
References 345
Part II Characterization 348
10 Simultaneous Topography and Recognition Imaging 349
10.1 Introduction 350
10.2 AFM Tip Chemistry 352
10.3 Operating Principles of TREC 355
10.3.1 Half-Amplitude Versus Full-Amplitude Feedback 358
10.3.2 Adjusting the Amplitude 361
10.3.3 Adjusting the Driving Frequency 364
10.3.4 Proofing the Specificity of the Detected Interactions 366
Specificity Proof by Competitive Inhibition 366
Specificity Proof by Amplitude Variation 368
10.4 Applications of TREC: Single Proteins, Membranes,and Cells 368
10.4.1 Antibiotin Antibodies Adsorbed to an Organic Semiconductor 368
10.4.2 Bacterial S-Layer Lattices 370
10.4.3 RBC Membranes 373
10.4.4 Cells 375
10.5 Conclusion 381
References 381
11 Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM 387
11.1 Introduction 387
11.2 Atomic Force Microscopy 388
11.2.1 Principle of Operation 388
Overview 388
Imaging Mode 390
Force Mode 390
Force Mapping Mode 391
11.2.2 Instrumentation 391
11.2.3 Mechanical Measurements 392
11.3 Atomic Force Microscopy in Ophthalmology 394
11.3.1 Cornea 394
Structure 394
Corneal Refractive Surgery 398
Corneal Transplant Surgery 398
11.3.2 Contact Lenses 398
Surface Characterization 398
Biomechanical Properties 400
11.3.3 Lens 400
Structure 400
Mechanics 402
Artificial Lenses 403
11.3.4 Retinal Tissue 405
Structure 405
Mechanical Properties 406
11.4 Summary and Conclusions 407
References 407
12 Force-Extension and Force-Clamp AFM Spectroscopies in Investigating Mechanochemical Reactions and Mechanical Properties of Single Biomolecules 418
12.1 Introduction 419
12.2 Experimental Techniques for Measuring Displacements and Forces at the Single Molecule Level 420
12.2.1 Centroid Tracking 420
12.2.2 Fluorescence Resonance Energy Transfer 421
12.2.3 Magnetic Tweezers 422
12.2.4 Optical Traps 422
12.2.5 Single Molecule AFM Force Spectroscopy 424
12.3 Displacement and Force as Control Parameters in Small Systems 425
12.3.1 Displacement Sensitivity and Resolution 425
12.3.2 Force Sensitivity and Resolution 427
12.4 AFM Force Spectroscopy with a Few Piconewton Sensitivity and at a Single Molecule Level 427
12.4.1 Fingerprinting the Biomolecules 428
12.4.2 Optimizing the AFM System 428
12.5 FX-AFM Probes Mechanical Stability of Proteins and Polysaccharides 429
12.5.1 Details of the FX Trace 429
12.5.2 What can be Inferred from the FX Trace? 430
12.5.3 Applications of FX Force Spectroscopy 431
12.6 FC-AFM Probes the Details of Protein (Un)folding and Force-Induced Disulfide Reductions in Proteins 432
12.6.1 Details of the FC Trace 432
12.6.2 What can be Inferred from the FC Trace? 433
12.6.3 Applications of the FC Spectroscopy 435
12.7 Some Shortcomings of the FX/FC-AFM Spectroscopies 436
References 437
13 Multilevel Experimental and Modelling Techniques for Bioartificial Scaffolds and Matrices 447
13.1 Scaffolds for Tissue-Engineering Applications 448
13.2 Multi-Scale Computer-Aided Approach in Designing and Modelling Scaffold for Tissue Regeneration 451
13.2.1 CATE: Computer-Aided Anatomical Tissue Representation, CT and MRI Techniques 451
13.2.2 CATE: From Computer-Aided Anatomic 3D Reconstruction to Scaffolds Modelling and Design 454
13.2.3 CATE: FEM and CFD-Based Scaffolds Modelling and Design Methods 470
13.3 Understanding the Cell and Tissue Mechanics: A Multi-Scale Approach 486
13.4 Experimental Techniques for Scaffolds Characterisations 490
References 498
14 Quantized Mechanics of Nanotubes and Bundles 509
14.1 Introduction 509
14.2 Quantized Fracture Mechanics Approaches 510
14.3 Fracture Strength 514
14.4 Impact Strength 515
14.5 Hyper-Elasticity, Elastic-Plasticity, Fractal Cracks,and Finite Domains 516
14.6 Fatigue Life 516
14.7 Elasticity 517
14.8 Atomistic Simulations 518
14.9 Nanotensile Tests 521
14.10 Thermodynamic Limit 524
14.11 Hierarchical Simulations and Size Effects: from a Nanotube to a Megacable 525
14.12 Conclusions 527
References 527
15 Spin and Charge Pairing Instabilities in Nanoclusters and Nanomaterials 529
15.1 From Atoms to Solids 529
15.1.1 Discreteness of Spectrum 531
15.1.2 Electron Spectroscopy 532
15.1.3 Electron Correlations in Clusters 533
15.2 Transition Metal Oxides 535
15.2.1 Spin-Charge Separation 535
Doped Cuprates and Manganites 537
Electronic Characteristics 537
Phase Separation 538
15.2.2 BCS Versus High Tc Superconductivity 540
15.2.3 Localized Versus Itinerant Behavior 542
15.3 Scanning Tunneling Experiments 543
15.3.1 Pseudogap and Gap 543
15.3.2 Two Energy (Temperature) Scales 545
15.3.3 Coherent Versus Incoherent Condensation 546
15.3.4 Modulated Pairs in Cuprates 548
15.3.5 Inhomogeneities 548
15.4 Bethe-Ansatz and GSCF Theories 550
15.5 Hubbard Model 551
15.5.1 GSCF Decoupling Scheme 551
15.5.2 Canonical Transformation 553
15.5.3 Order Parameter q(+) 554
15.5.4 Quasi-Particle Spectrum 556
15.5.5 Chemical Potential 557
15.5.6 Ground State Phase Diagram 559
15.5.7 GSCF Phase Diagram at T=0 561
15.6 Bottom up Approach 562
15.6.1 The Cluster Formalism 564
15.7 General Methodology 564
15.7.1 The Canonical Charge and Spin Gaps 565
15.7.2 Quantum Critical Points: Level Crossings 567
15.7.3 Symmetry Breaking 568
15.7.4 The Charge and Spin Instabilities 570
15.7.5 The Charge and Spin Susceptibility Peaks 572
15.7.6 Charge and Spin Inhomogeneities 573
15.7.7 The Coherent Charge and Spin Pairings 575
15.8 Ground State Properties 576
15.8.1 Bipartite Clusters 576
15.8.2 Tetrahedrons 578
15.8.3 Square Pyramids 581
15.9 Phase T- Diagram 582
15.9.1 Tetrahedrons at t=1 582
15.10 Conclusion 585
References 587
16 Mechanical Properties of One-Dimensional Nanostructures 593
16.1 Introduction 593
16.2 Mechanical Property Measurements of One-Dimensional Nanostructures 594
16.2.1 Electric Field-Induced Mechanical Resonance of One-Dimensional Nanostructures 595
16.2.2 Axial Tensile Loading of One-Dimensional Nanostructures 596
16.2.3 Three-Point Bending Test of Bridge-Suspended One-Dimensional Nanostructures 597
16.2.4 Beam-Bending of One-End-Clamped One-Dimensional Nanostructures 598
16.2.5 Instrumented Indentation of One-Dimensional Nanostructures 599
16.2.6 Contact Modulation AFM-Based Techniques 600
16.3 Contact-Resonance Atomic Force Microscopy 601
16.3.1 Cantilever Dynamics in CR-AFM 602
16.3.2 Contact Mechanics in CR-AFM 605
16.3.3 Precision and Accuracy in CR-AFM Measurements (Dual-Reference Calibration Method for CR-AFM) 607
16.4 Contact-Resonance Atomic Force Microscopy Applied to Elastic Modulus Measurements of 1D Nanostructures 609
16.4.1 Normal Contact Stiffness of the Tip–Nanowire Contact 610
16.4.2 Lateral Contact Stiffness of the Tip–Nanowire Contact 611
16.5 Elastic Moduli of ZnO and Te Nanowires Measured by CR-AFM 612
16.5.1 CR-AFM Measurements on ZnO Nanowires 612
16.5.2 CR-AFM Measurements on Te Nanowires 618
16.6 Surface Effects on the Mechanical Properties of 1D Nanostructures 623
16.7 How Important Are the Mechanical Propertiesof 1D Nanostructures in Applications? 626
References 627
17 Colossal Permittivity in Advanced Functional Heterogeneous Materials: The Relevanceof the Local Measurements at Submicron Scale 634
17.1 Introduction 635
17.2 Physical Properties of Heterogeneous Materials 637
17.2.1 Theory of the Dielectric Relaxation: Basic Principles 637
Mobile Charge Carrier Contribution 638
17.2.2 Separation of Charges: Maxwell/Wagner/Sillars Polarization 640
Mesoscopic Scale: Separation of ChargesMaxwell/Wagner/Sillars (MW) Polarization 640
Macroscopic Scale: Electrode Polarization 641
17.2.3 Ultimate Theories on the Dielectric Relaxation 642
The Presence of Inner Schottky Barriers 644
Intrinsic and Extrinsic Mechanisms 646
17.3 Conventional Macroscopic Techniques 648
17.3.1 Basic Principles 648
17.3.2 Dielectric Spectroscopy 649
17.4 Scanning Probe Microscopy 650
17.4.1 Scanning Tunnelling Microscopy on Giant- Materials 650
17.4.2 Kelvin Probe Force Microscopy on Giant- Materials 654
17.4.3 SIM on Giant- Materials 657
CCTO Polycrystalline Ceramics 657
CCTO Single Crystal 662
17.5 Summary and Conclusions 664
References 665
18 Controlling Wear on Nanoscale 668
18.1 Introduction 669
18.2 Molecular and Supra-Molecular Featuresfor Basic Wear Mechanism 672
18.2.1 Abrasive Wear Mechanisms for Viscoelastic Materials 687
18.3 Modelling Wear as an Activated Process 690
18.3.1 Self-assembled Monolayers as a Frame for Modelling Wear in Viscoelastic Materials 696
18.4 Conclusions 704
References 705
19 Contact Potential Difference Techniques as Probing Tools in Tribology and Surface Mapping 708
19.1 Introduction 708
19.2 Electron Work Function as a Parameterfor Surfaces Characterization 709
19.3 Measurements of Contact Potential Difference 711
19.3.1 Kelvin-Zisman Probe 712
19.3.2 Nonvibrating Probe 713
19.3.3 Ionization Probe 714
19.3.4 Atomic Force Microscope in Kelvin Mode 715
19.4 Typical Electron Work Function Responses 717
19.4.1 Surface Deformation 717
19.4.2 Friction 719
19.4.3 Experimental Examples of Kelvin Technique Application 722
19.5 Periodic Electron Work FunctionChanges During Friction 725
19.5.1 Phenomenology 725
19.6 Surface Mapping Examples 734
19.7 Closure 737
Acknowledgements 738
References 738
Part III Industrial Applications 742
20 Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture 743
20.1 Introduction: History of AFM Applications to Biological Macromolecules 744
20.1.1 Nanometer Scale Imaging of DNA–Protein Complexes 744
20.1.2 Visualization of Various Biological Macromolecules 745
20.1.3 Challenges Toward Technical Advancement 746
20.2 Trends in Biological AFM 747
20.2.1 Analyses of Biological Macromolecules in Motion 747
20.2.2 Measurement of Pico-Newton Mechanical Forces in Biological Systems 749
20.2.3 Cantilever Modification and Application to Force Measurements 750
20.2.4 Recognition Imaging: Integration of Force Measurements and Imaging 751
20.3 Eukaryotic Genome Architecture 751
20.3.1 Biophysical Properties of DNA and DNA-Binding Proteins 753
20.3.2 Fundamental Structures of Eukaryotic Genomes 755
20.3.3 Chromosome Structure in the Mitotic Phase 758
20.3.4 Chromatin Structure Inside Nuclei 758
20.4 Prokaryotic Genome Architecture 759
20.4.1 Bacterial DNA-Binding Proteins 759
20.4.2 Bacterial Genome Structure and Dynamics 761
20.4.3 Archaeal DNA-Binding Proteins, Genome Structure, and Dynamics 762
20.5 Conclusion/Perspectives 766
References 766
21 Near-Field Optical Litography 777
21.1 Introduction 778
21.2 Lithography: Principles and Materials 778
21.2.1 Photolitography 780
21.2.2 Electron Beam Lithography 782
21.2.3 Ion Beam Lithography 783
21.2.4 Materials 784
21.3 Scanning Near-Field Optical Microscopy and Lithography 787
21.3.1 Aperture and Apertureless SNOM Lithography 791
21.3.2 Near-Field Optical Lithography Achievements on Azo – Polymers 801
21.4 Conclusions 808
References 808
22 A New AFM-Based Lithography Method: Thermochemical Nanolithography 814
22.1 Introduction 815
22.2 Thermochemical Nanolithography 816
22.3 Thermal Unmasking of Chemical Groups on a Polymer 818
22.3.1 Unmasking Carboxylic Acid Groups 818
22.3.2 Unmasking Amines Groups 821
22.4 Two-Step Wettability Modification 821
22.5 Covalent Functionalization and Molecular Recognition 824
References 828
23 Scanning Probe Alloying Nanolithography 831
23.1 Brief Review of Nanolithography 831
23.1.1 Introduction 831
23.1.2 Probe-Based Lithography 833
23.1.3 Probe Materials and Properties 834
23.1.4 Probe Wear 835
23.2 Nanoalloying and Nanocrystallization 837
23.2.1 Background 837
23.2.2 Synthesis of Nanoalloys 837
23.3 Probe-Based Nanoalloying and Nanocrystalizations 838
23.3.1 Background 838
23.3.2 Scanning Probe-Based Alloying Nanolithography 839
AFM Functionality as a Processing Tool 839
Basic AFM Setup for Nanoprocessing 840
Interfacial Interactions Between Tip and Substrate 840
Mechanical Sliding 840
Morphology of AFM Tips 841
Chemical Analysis 842
Morphological Analysis of ``Wear'' Tracks 843
References 845
24 Structuring the Surface of Crystallizable Polymers with an AFM Tip 851
24.1 Introduction 851
24.2 Experimental Part 854
24.2.1 Characteristics of the Polymers Used 854
24.2.2 Sample Preparation 855
24.2.3 The Employed AFM Working Mode 855
24.3 Melting of Confined, Nanometer-Sized Polymer Crystals 859
24.3.1 Self-Assembly and Non-Periodic Patterns 859
24.3.2 The AFM Set-Up Employed for Local Heating 861
24.3.3 Local Melting of Confined Polymer Crystals 861
24.4 Lowering the Crystal Nucleation Barrier by Deforming Polymer Chains 874
24.4.1 Stretched Chains Resulting from Friction Transfer 874
24.4.2 Stretched Chains Resulting from Rubbing with an AFM Tip 877
24.5 Conclusions: Controlling Polymer Properties at a Molecular Scale 880
References 881
25 Application of Contact Mode AFM to ManufacturingProcesses 885
25.1 Introduction 885
25.2 Review of Atomic Force Microscope Capabilities Relevant to Manufacturing 887
25.2.1 Evaluation of Mechanical Properties 887
Hardness Testing 887
Scratch Testing 892
Wear Testing 896
25.2.2 Friction/Lubricant Evaluation 900
Review of Lubrication Fundamentals 900
Friction Force Microscopy 903
25.3 Applications to Metal Forming 904
25.3.1 Evaluation of Lubricants 904
25.3.2 Bulk and Sheet Forming 905
25.3.3 Powder Processing 912
25.4 Abrasive Machining Processes 914
25.4.1 Grinding and Polishing 914
25.4.2 Chemical Mechanical Polishing 915
25.4.3 Miscellaneous Applications 919
Nanolithography 919
25.5 Polymer Processing 920
25.6 Conclusions 922
References 923
26 Scanning Probe Microscopy as a Tool Applied to Agriculture 933
26.1 Applications of Nanotechnology in Agriculture 933
26.2 Applications of AFM in Agriculture 934
26.2.1 Introduction 934
26.2.2 Some Examples and Results of Agricultural Research 934
Nanostructured Films 934
Structures Containing Nanoparticles and Nanofibers 940
Sensors and Biosensors 941
Direct Measurement of Interaction Forces 945
Natural Fibers and Soil Science 950
Other Applications 954
26.3 Conclusions and Perspectives 958
References 958
Index 963

Erscheint lt. Verlag 22.1.2010
Reihe/Serie NanoScience and Technology
NanoScience and Technology
Zusatzinfo XXX, 956 p. 300 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte atomic force microscope • BioMEMS/NEMS • Biomimetics • Biosensor • biosensors • Carbon Nanotubes • Electronics • Industrie • Mechanics • Modeling • Nanomaterial • Nanoscience • nanostructure • nanotechnology • Scanning Probe Microscopy • Sensor • soft matter • Surface
ISBN-10 3-642-03535-3 / 3642035353
ISBN-13 978-3-642-03535-7 / 9783642035357
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich