Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Nanoscale Transistors (eBook)

Device Physics, Modeling and Simulation
eBook Download: PDF
2006 | 2006
VIII, 218 Seiten
Springer US (Verlag)
978-0-387-28003-5 (ISBN)

Lese- und Medienproben

Nanoscale Transistors - Mark Lundstrom, Jing Guo
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules



Mark S. Lundstrom is the Scifres Distinguished Professor of Electrical and Computer Engineering at Purdue University where he also directs the NSF Network for Computational Nanotechnology. His current research interests center on the physics of semiconductor devices, especially nanoscale transistors. His previous work includes studies of heterostructure devices, solar cells, heterojunction bipolar transistors and semiconductor lasers. During the course of his Purdue career, Lundstrom has served as director of the Optoelectronics Research Center and assistant dean of the Schools of Engineering. He is a fellow of both the Institute of Electrical and Electronic Engineers (IEEE) and the American Physical Society and the recipient of several awards for teaching and research - most recently the 2002 IEEE Cledo Brunetti Award and the 2002 Semiconductor Research Corporation Technical Achievement Award for his work with his colleague, S. Datta, on nanoscale electronics.

Jing Guo is an assistant professor of Electrical and Computer Engineering at University of Florida, Gainesville. His has worked on the theory, modeling and simulation of a variety of nanotransistors, including silicon nanotransistors, carbon nanotube transistors, and single electron transistors, in close collaboration with experimentalists. His current research interests focus on modeling and simulation of nanoscale devices, carbon nanotube electronics and optoelectronics, quantum transport, physics of nanoscale transistors, and parallel computation.


Silicon technology continues to progress, but device scaling is rapidly taking the metal oxide semiconductor field-effect transistor (MOSFET) to its limit. When MOS technology was developed in the 1960's, channel lengths were about 10 micrometers, but researchers are now building transistors with channel lengths of less than 10 nanometers. New kinds of transistors and other devices are also being explored. Nanoscale MOSFET engineering continues, however, to be dominated by concepts and approaches originally developed to treat microscale devices. To push MOSFETs to their limits and to explore devices that may complement or even supplant them, a clear understanding of device physics at the nano/molecular scale will be essential. Our objective is to provide engineers and scientists with that understandin- not only of nano-devices, but also of the considerations that ultimately determine system performance. It is likely that nanoelectronics will involve much more than making smaller and different transistors, but nanoscale transistors provides a specific, clear context in which to address some broad issues and is, therefore, our focus in this monograph.

Mark S. Lundstrom is the Scifres Distinguished Professor of Electrical and Computer Engineering at Purdue University where he also directs the NSF Network for Computational Nanotechnology. His current research interests center on the physics of semiconductor devices, especially nanoscale transistors. His previous work includes studies of heterostructure devices, solar cells, heterojunction bipolar transistors and semiconductor lasers. During the course of his Purdue career, Lundstrom has served as director of the Optoelectronics Research Center and assistant dean of the Schools of Engineering. He is a fellow of both the Institute of Electrical and Electronic Engineers (IEEE) and the American Physical Society and the recipient of several awards for teaching and research — most recently the 2002 IEEE Cledo Brunetti Award and the 2002 Semiconductor Research Corporation Technical Achievement Award for his work with his colleague, S. Datta, on nanoscale electronics. Jing Guo is an assistant professor of Electrical and Computer Engineering at University of Florida, Gainesville. His has worked on the theory, modeling and simulation of a variety of nanotransistors, including silicon nanotransistors, carbon nanotube transistors, and single electron transistors, in close collaboration with experimentalists. His current research interests focus on modeling and simulation of nanoscale devices, carbon nanotube electronics and optoelectronics, quantum transport, physics of nanoscale transistors, and parallel computation.

Basic Concepts.- Devices, Circuits, and Systems.- The Ballistic Nanotransistor.- Scattering Theory of the MOSFET.- Nanowire Field-Effect Transistors.- Transistors at the Molecular Scale.

Erscheint lt. Verlag 18.6.2006
Zusatzinfo VIII, 218 p. 106 illus.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Development • Electronics • Nanotube • Production • Semiconductor Devices • Simulation • Transistor
ISBN-10 0-387-28003-0 / 0387280030
ISBN-13 978-0-387-28003-5 / 9780387280035
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

eBook Download (2023)
De Gruyter (Verlag)
CHF 53,65