Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Modern Differential Geometry in Gauge Theories (eBook)

Maxwell Fields, Volume I
eBook Download: PDF
2006 | 2006
XVII, 293 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4474-1 (ISBN)

Lese- und Medienproben

Modern Differential Geometry in Gauge Theories - Anastasios Mallios
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This is original, well-written work of interest

Presents for the first time (physical) field theories written in sheaf-theoretic language

Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments

Author's mastery of the subject and the rigorous treatment of this text make it invaluable


Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author's perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications.Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Beginning with Volume 1, the focus is on Maxwell fields. All the basic concepts of this mathematical approach are formulated and used thereafter to describe elementary particles, electromagnetism, and geometric prequantization. Maxwell fields are fully examined and classified in the language of sheaf theory and sheaf cohomology. Continuing in Volume 2, this sheaf-theoretic approach is applied to Yang-Mills fields in general.The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity.

Maxwell Fields: General Theory.- The Rudiments of Abstract Differential Geometry.- Elementary Particles: Sheaf-Theoretic Classification, by Spin-Structure, According to Selesnick’s Correspondence Principle.- Electromagnetism.- Cohomological Classification of Maxwell and Hermitian Maxwell Fields.- Geometric Prequantization.

Erscheint lt. Verlag 27.7.2006
Mitarbeit Anpassung von: George A. Anastassiou
Zusatzinfo XVII, 293 p.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Calculus • differential equation • Differential Geometry • electromagnetism • Gauge Theory • manifold • Particle physics • Potential • Smooth function
ISBN-10 0-8176-4474-1 / 0817644741
ISBN-13 978-0-8176-4474-1 / 9780817644741
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich