Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fundamentals of Thermophotovoltaic Energy Conversion -  Donald Chubb

Fundamentals of Thermophotovoltaic Energy Conversion (eBook)

(Autor)

eBook Download: EPUB
2007 | 1. Auflage
530 Seiten
Elsevier Science (Verlag)
978-0-08-056068-7 (ISBN)
Systemvoraussetzungen
114,30 inkl. MwSt
(CHF 109,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
"This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems.

The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system, the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance the emitter efficiency is calculated. Chapter 4 discusses interference, plasma and resonant array filters plus an interference filter with an imbedded metallic layer, a combined interference-plasma filter and spectral control using a back surface reflector(BSR) on the PV array. The theory necessary to calculate the optical properties of these filters is presented. Chapter 5 presents the fundamentals of semiconductor PV cells. Using transport equations calculation of the current-voltage relation for a PV cell is carried out. Quantum efficiency, spectral response and the electrical equivalent circuit for a PV cell are introduced so that the PV cell efficiency and power output can be calculated.

The final three chapters of the book consider the combination of the emitter, filter and PV array that make up the optical cavity of a TPV system. Chapter 6 applies radiation transfer theory to calculate the cavity efficiency of planar and cylindrical optical cavities. Also introduced in Chapter 6 are the overall TPV efficiency, thermal efficiency and PV efficiency. Leakage of radiation out of the optical cavity results in a significant loss in TPV efficiency. Chapter 7 considers that topic. The final chapter presents a model for a planar TPV system.

Six appendices present background information necessary to carry out theoretical developments in the text. Two of the appendices include Mathematica programs for the spectral optical properties of multi-layer interference filters and a planar TPV system. These programs are contained on a CD-Rom disk included with the book.

? First text written on thermophotovoltaic(TPV) energy conversion
? Includes all the necessary theory to calculate TPV system performance
? Author has been doing TPV energy conversion research since 1980's
? Emphasizes the fundamentals of TPV energy conversion
? Includes a summary and problem set at the end of each chapter
? Mathematica programs for calculating optical properties of interference filters and planar TPV system performance included on CD-Rom"
This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Each chapter includes a summary and concludes with a set of problems.The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance the emitter efficiency is calculated. Chapter 4 discusses interference, plasma and resonant array filters plus an interference filter with an imbedded metallic layer, a combined interference-plasma filter and spectral control using a back surface reflector(BSR) on the PV array. The theory necessary to calculate the optical properties of these filters is presented. Chapter 5 presents the fundamentals of semiconductor PV cells. Using transport equations calculation of the current-voltage relation for a PV cell is carried out. Quantum efficiency, spectral response and the electrical equivalent circuit for a PV cell are introduced so that the PV cell efficiency and power output can be calculated.The final three chapters of the book consider the combination of the emitter, filter and PV array that make up the optical cavity of a TPV system. Chapter 6 applies radiation transfer theory to calculate the cavity efficiency of planar and cylindrical optical cavities. Also introduced in Chapter 6 are the overall TPV efficiency, thermal efficiency and PV efficiency. Leakage of radiation out of the optical cavity results in a significant loss in TPV efficiency. Chapter 7 considers that topic. The final chapter presents a model for a planar TPV system.Six appendices present background information necessary to carry out theoretical developments in the text. Two of the appendices include Mathematica programs for the spectral optical properties of multi-layer interference filters and a planar TPV system. Software is included for downloading all the programs within the book. - First text written on thermophotovoltaic(TPV) energy conversion- Includes all the necessary theory to calculate TPV system performance- Author has been doing TPV energy conversion research since 1980's- Emphasizes the fundamentals of TPV energy conversion- Includes a summary and problem set at the end of each chapter- Includes Mathematica programs for calculating optical properties of interference filters and planar TPV system performance solution software

Front Cover 1
Fundamentals of THERMOPHOTOVOLTAIC ENERGY CONVERSION 4
Copyright Page 5
Acknowledgements 6
Preface 8
Table of Contents 10
Chapter 1 – Introduction 16
1.1 Symbols 16
1.2 Thermphotovoltaic (TPV) Energy Conversion Concept 18
1.3 A Short History of TPV Energy Conversion 18
1.4 TPV Applications 20
1.5 Propagation of Electromagnetic Waves 21
1.5.1 Plane Wave Solution to Maxwell’s Equations 21
1.5.2 Energy Flux for Plane Electromagnetic Waves 29
1.5.3 Boundary Conditions at an Interface 32
1.5.4 The Law of Reflection and Snell’s Law of Refraction 35
1.5.5 Reflectivity and Transmissivity at an Interface 40
1.5.6 Connections between Electromagnetic Theory and Radiation Transfer Theory 49
1.6 Introduction to Radiation Transfer 50
1.6.1 Radiation Intensity 50
1.6.2 Blackbody 53
1.6.3 Blackbody Spectral Emissive Power 54
1.6.4 Blackbody Total Emissive Power 57
1.6.5 Equations for Radiation Energy Transfer 59
1.6.6 Energy Conservation Including Radiation 62
1.7 Optical Properties 65
1.7.1 Emittance and Absorptance 66
1.7.2 Hemispherical Spectral and Hemispherical Total Reflectivity 70
1.7.3 Independence of Emitted (Absorbed), Reflected, and Transmitted Radiation 72
1.8 Radiation Energy Balance for One Dimensional Model 78
1.9 Emittance of a Metal into a Dielectric 81
1.10 Summary 85
References 86
Problems 87
Chapter 2 – Maximum Efficiency and Power Density for TPV Energy Conversion 92
2.1 Symbols 92
2.2 Maximum TPV Efficiency 94
2.3 Maximum TPV Efficiency for Constant Emitter Emittance and PV Cell Reflectance 98
2.4 Ideal TPV System 99
2.5 Approximation of Selective Emitter and Filter TPV Systems 101
2.6 Power Output 104
2.7 Summary 106
References 107
Problems 107
Chapter 3 – Emitter Performances 110
3.1 Symbols 110
3.2 Gray Body Emitters 112
3.3 Selective Emitters 113
3.3.1 Rare Earth Selective Emitters 114
3.3.2 Other Selective Emitters 117
3.4 Extinction Coefficient and Optical Depth 119
3.5 Extinction Coefficients of Rare Earth Selective Emitters 120
3.6 Coupled Energy Equation and Radiation Transfer Equation for a Solid Material 123
3.7 One Dimensional Radiation Transfer Equations 123
3.7.1 One Dimensional Source Function Equation 127
3.7.2 One Dimensional Radiation Flux 128
3.7.3 No Scattering Medium 129
3.8 Spectral Emittance for Planar Emitter 130
3.8.1 No Scattering Spectral Emittance 143
3.8.2 No Scattering, Linear Temperature Variation Spectral Emittance 146
3.8.3 Importance of Temperature Change Across Planar Emitter 155
3.8.4 Effect of Scattering on Spectral Emittance of a Planar Emitter 157
3.9 Cylindrical Emitter 161
3.10 Emitter Performance 168
3.10.1 Gray Body Emitter Performance 169
3.10.2 Selective Emitter Performance 172
3.10.3 Cylindrical Selective Emitter Performance 172
3.10.4 Planar Selective Emitter Performance 179
3.11 Comparison of Selective Emitters and Gray Body Emitters 185
3.12 Summary 187
References 189
Problems 190
Chapter 4 – Optical Filters for Thermophotovoltaics 194
4.1 Symbols 194
4.2 Filter Performance Parameters 196
4.3 Interference Filters 198
4.3.1 Introduction 198
4.3.2 Interference 198
4.3.3 Interference Filter Model 200
4.3.4 Reflectance, Transmittance, and Absorptance 208
4.3.5 Single Film System 213
4.3.6 Many Layer System for phii = Npi or phii = Npi/2 and N is an Odd Integer 225
4.3.7 Equivalent Layer Procedure 229
4.3.8 Interference Filter with Embedded Metallic Layer 237
4.3.9 Interference Filter Performance for Angles of Incidence Greater than Zero 244
4.4 Plasma Filters 247
4.4.1 Drude Model 247
4.4.2 Reflectance, Transmittance, and Absorptance of a Plasma Filter 259
4.4.3 Efficiency and Total Transmittance, Reflectance, and Absorptance of a Plasma Filter 264
4.5 Combined Interference-Plasma Filter 268
4.6 Resonant Array Filters 275
4.6.1 Transmission Line Theory 276
4.6.2 Transmission Line Equivalent Circuit for Resonant Array Filter 281
4.6.3 Metallic Mesh Filter 285
4.7 Spectral Control Using a Back Surface Reflector (BSR) 292
4.7.1 Efficiency of a Back Surface Reflector (BSR) for Spectral Control 292
4.8 Summary 298
References 299
Problems 301
Chapter 5 – Photovoltaic Cells 306
5.1 Symbols 306
5.2 Energy Bands (Kronig-Penney Model) and Current in Semiconductors 309
5.3 Density of Electrons and Holes and Mass Action Law 317
5.4 Transport Equations 325
5.5 Generation and Recombination of Electrons and Holes 328
5.5.1 Generation of Electrons and Holes 328
5.5.2 Recombination of Electrons and Holes 331
5.6 p-n Junction 335
5.7 Current-Voltage Relation for an Ideal Junction in the Dark 338
5.7.1 Assumptions for Ideal p-n Junction 339
5.7.2 Current-Voltage Relation for Infinite Neutral Regions 341
5.7.3 Current-Voltage Relation for Finite Neutral Regions 345
5.7.4 Depletion Region Contribution to Current and High-Injection Effects 351
5.8 Ideality Factor and Empirical Current-Voltage Relation of p-n Junction in the Dark 353
5.9 Current-Voltage Relation for an Ideal p-n Junction Under Illumination 354
5.9.1 Electron Current Density in p Region 355
5.9.2 Hole Current Density in n Region 364
5.9.3 Current Generation in Depletion Region 372
5.9.4 Current-Voltage Relation 374
5.10 Quantum Efficiency and Spectral Response 377
5.11 Equivalent Circuit for PV Cells 383
5.12 PV Cell Efficiency and Power Output 389
5.13 Summary 403
References 406
Problems 407
Chapter 6 – Governing Equations for Radiation Fluxes in Optical Cavity 410
6.1 Symbols 410
6.2 Radiation Transfer Theory 412
6.2.1 Radiation Transfer for Uniform Intensity 412
6.2.2 View-Factors for TPV Systems 414
6.2.3 Optical Properties of Components 420
6.2.4 Energy Balance on a Component of a TPV System 425
6.3 Radiation Energy Transfer in Planar TPV System 428
6.4 Radiation Energy Transfer in Cylindrical TPV System 432
6.5 Efficiency of TPV Systems 437
6.5.1 Overall Efficiency 437
6.5.2 Thermal Efficiency 437
6.5.3 Cavity Efficiency 437
6.5.4 Photovoltaic Efficiency 438
6.6 Summary 438
References 439
Problems 439
Chapter 7 – Radiation Losses in Optical Cavity 442
7.1 Symbols 442
7.2 Cavity Efficiency for Planar Filter and Selective Emitter TPV Systems without a Window 443
7.3 Cavity Efficiency for Cylindrical Filter and Selective Emitter TPV Systems without a Window 455
7.4 Cavity Efficiency for TPV Systems with Reflectivity End Caps 461
7.4.1 Development of Radiation Transfer Equations 461
7.4.2 Radiation Transfer Equations for TPV Systems with Close Coupled Emitter-Window and Filter-PV Cells 465
7.4.3 Cavity Efficiency 469
7.5 Summary 472
Problems 473
Chapter 8 – TPV System Performance 476
8.1 Symbols 476
8.2 TPV System Model 477
8.3 Radiation Transfer Equations 478
8.4 Solution Method for TPV System Model 483
8.5 Results of TPV System Model for Hypothetical System 487
8.5.1 Importance of Radiation Leakage 489
8.5.2 Importance of Filter Absorptance 489
8.6 TPV System with Selective Emitter and Back Surface Reflector (BSR) 491
8.6.1 Dependence of TPV Performance upon Input Power 494
8.7 Importance of PV Array Temperature on TPV Performance 498
8.8 Review of Radiation Transfer Method 499
8.9 Summary 500
Problems 500
Appendices 506
Appendix A – Exponential Integrals 506
Appendix B – Coupled Energy and Radiation Transfer Equations 510
Appendix C – 2 x 2 Matrix Algebra 514
Appendix D – Mathematica Program for Multi-layer Interference Filter 516
Appendix E – Quantum Mechanics 518
Appendix F – Mathematica Program for Planar Geometry TPV Model 524
Index 528

Erscheint lt. Verlag 11.5.2007
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-056068-7 / 0080560687
ISBN-13 978-0-08-056068-7 / 9780080560687
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Fundamentals and Methods

von Thomas Fauster; Lutz Hammer; Klaus Heinz …

eBook Download (2020)
De Gruyter Oldenbourg (Verlag)
CHF 48,80
Concepts, Phenomena, and Applications

von Wim van Saarloos; Vincenzo Vitelli; Zorana Zeravcic

eBook Download (2023)
Princeton University Press (Verlag)
CHF 92,80