Internal Photoemission Spectroscopy (eBook)
312 Seiten
Elsevier Science (Verlag)
978-0-08-055589-8 (ISBN)
In addition to the discussion of fundamental physical and technical aspects of IPE spectroscopic applications, several hot topics are addressed. These include development of new insulating materials for advances Si MOS technology (both high-k gate insulators and low-k dielectrics for interconnect insulation), metal gate materials, development of heterostructures based on high-mobility semiconductors, etc. Thanks to a considerable activity in this field over the last few years, the recent results concerning band structure of most important interfaces involving novel materials can now be documented.
- First complete description of the internal photoemission phenomena
- A practical guide to internal photoemission measurements
- Describes reliable energy barrier determination procedures
- Surveys trap spectroscopy methods applicable to thin insulating layers
- Provides an overview of the most recent results on band structure of high-permittivity insulating materials and their interfaces
- Contains a complete collection of reference data on interface band alignment for wide-bandgap insulating materials in contact with metals and semiconductors
The monographic book addresses the basics of the charge carrier photoemission from one solid to another - the internal photoemission, (IPE) - and different spectroscopic applications of this phenomenon to solid state heterojunctions. This is the first book in the field of IPE, which complements the conventional external photoemission spectroscopy by analysing interfaces separated from the sample surface by a layer of a different solid or liquid. IPE is providing the most straightforward and, therefore, reliable information regarding the energy spectrum of electron states at interfaces. At the same time, the method provides the unique capability of analysing the heterostructures relevant to the modern micro- and nano-electronic devices as well as new materials involved in their design and fabrication.In addition to the discussion of fundamental physical and technical aspects of IPE spectroscopic applications, several "e;hot topics are addressed. These include development of new insulating materials for advances Si MOS technology (both high-k gate insulators and low-k dielectrics for interconnect insulation), metal gate materials, development of heterostructures based on high-mobility semiconductors, etc. Thanks to a considerable activity in this field over the last few years, the recent results concerning band structure of most important interfaces involving novel materials can now be documented.- First complete description of the internal photoemission phenomena - A practical guide to internal photoemission measurements- Describes reliable energy barrier determination procedures - Surveys trap spectroscopy methods applicable to thin insulating layers- Provides an overview of the most recent results on band structure of high-permittivity insulating materials and their interfaces- Contains a complete collection of reference data on interface band alignment for wide-bandgap insulating materials in contact with metals and semiconductors
Front Cover 1
Internal Photoemission Spectroscopy 4
Copyright Page 5
Contents 8
Preface 12
List of Abbreviations 14
List of Symbols 16
Chapter 1 Preliminary Remarks and Historical Overview 18
1.1 General Concept of IPE 18
1.2 IPE and Materials Analysis Issues 19
1.3 Interfaces of Wide Bandgap Insulators 22
1.4 Metal–Semiconductor Barriers 25
1.5 Energy Barriers at Semiconductor Heterojunctions 29
1.6 Energy Barriers at Interfaces of Organic Solids and Molecular Layers 31
1.7 Energy Barriers at Interfaces of Solids with Electrolytes 35
Chapter 2 Internal versus External Photoemission 40
2.1 Common Steps in Internal and External Photoemission 40
2.1.1 Optical excitation 41
2.1.2 Transport of excited electron to the surface of emitter 42
2.1.3 Escape from emitter: the Fowler model 46
2.2 IPE-Specific Features 49
2.2.1 Effects of the collector DOS 49
2.2.2 Effects associated with occupied electron states in the collector 51
2.2.3 Interface barrier shape 52
2.2.4 Electron scattering in the image-force potential well 56
2.2.5 Effects of fixed charge in the collector 59
2.2.6 Collector transport effects 62
Chapter 3 Model Description and Experimental Realization of IPE 65
3.1 The Quantum Yield 65
3.2 Quantum Yield as a Function of Photon Energy 67
3.3 Quantum Yield as a Function of Electric Field 70
3.4 Conditions of IPE Observation 74
3.4.1 Injection-limited versus transport-limited current 74
3.4.2 Thermoionic emission versus photoemission 76
3.4.3 Photocurrents related to light-induced redistribution of electric field 77
3.5 Experimental Approaches to IPE 79
3.5.1 IPE sample design 79
3.5.2 Optical input designs 81
3.5.3 IPE signal detection 82
Chapter 4 Internal Photoemission Spectroscopy Methods 84
4.1 IPE Threshold Spectroscopy 85
4.1.1 Contributions of different bands to IPE 85
4.1.2 The Schottky plot analysis 89
4.1.3 Separation of different contributions to photocurrent 90
4.2 IPE Yield Spectroscopy 92
4.2.1 Mechanism of the yield modulation 93
4.2.2 Application of the IPE yield modulation to Si surface monitoring 95
4.2.3 Model for the optically induced yield modulation 99
4.3 Spectroscopy of Carrier Scattering 102
4.3.1 Scattering in emitter 102
4.3.2 Scattering in collector 105
4.4 PC and PI Spectroscopy 109
4.4.1 Intrinsic PC of collector 109
4.4.2 Spectroscopy of PI 114
4.4.3 PI of near-interface states in collector: the pseudo-IPE transitions 118
Chapter 5 Injection Spectroscopy of Thin Layers of Solids: Internal Photoemission as Compared to Other Injection Methods 124
5.1 Basic Approaches in the Injection Spectroscopy 125
5.2 Charge Injection Using IPE 126
5.3 Carrier Injection by Tunnelling 129
5.4 Excitation of Carriers in Emitter Using Electric Field 131
5.5 Electron–Hole Plasma Generation in Collector 134
5.6 What Charge Injection Technique to Choose? 138
Chapter 6 Trapped Charge Monitoring and Characterization 141
6.1 Injection Current Monitoring 141
6.2 Semiconductor Field-Effect Techniques 144
6.3 Charge Probing by Electron IPE 150
6.4 Charge Probing Using Trap Depopulation 154
6.5 Charge Probing Using Neutralization (Annihilation) 158
6.6 Monitoring the Injection-Induced Liberation of Hydrogen 162
Chapter 7 Charge Trapping Kinetics in the Injection-Limited Current Regime 165
7.1 Necessity of the Injection-Limited Current Regime 165
7.2 First-Order Trapping Kinetics: Single Trap Model 167
7.3 First-Order Trapping Kinetics: Multiple Trap Model 169
7.4 Effects of Detrapping 171
7.5 Carrier Recombination Effects 175
7.6 Trap Generation During Injection 177
7.7 Trapping Analysis in Practice 178
Chapter 8 Transport Effects in Charge Trapping 181
8.1 Strong Carrier Trapping Regime 181
8.2 Carrier Trapping Near the Injecting Interface 186
8.3 Inhibition of Trapping by Coulomb Repulsion 189
8.4 Carrier Redistribution by Coulomb Repulsion 194
8.5 Injection Blockage and Transition to Space-Charge-Limited Current 197
Chapter 9 Semiconductor–Insulator Interface Barriers 199
9.1 Electron States at the Si/SiO[sub(2)] Interface 200
9.1.1 Si/SiO[sub(2)] band alignment 200
9.1.2 Si/SiO[sub(2)] interface dipoles 201
9.1.3 Si/SiO[sub(2)] barrier modification by trapped charges 203
9.1.4 Trapped ions at Si/SiO[sub(2)] interface 205
9.2 High-Permittivity Insulators and Associated Issues 206
9.2.1 Application of high-permittivity insulators 206
9.2.2 Bandgap width in deposited oxide layers 209
9.3 Band Alignment at Interfaces of Silicon with High-Permittivity Insulators 212
9.3.1 Band alignment at interfaces of Si with elemental metal oxides 212
9.3.2 Interfaces of Si with complex metal oxides 215
9.3.3 Interfaces of Si with non-oxide insulators 220
9.4 Band Alignment between Other Semiconductors and Insulating Films 225
9.4.1 Ge/high-permittivity oxide interfaces 226
9.4.2 GaAs/insulator interfaces 229
9.4.3 SiC/insulator interfaces 234
9.5 Contributions to the Semiconductor–Insulator Interface Barriers 238
Chapter 10 Electron Energy Barriers between Conducting and Insulating Materials 241
10.1 Interface Barriers between Elemental Metals and Oxide Insulators 242
10.1.1 Metal–SiO[sub(2)] interfaces 242
10.1.2 Interfaces of elemental metals with high-permittivity oxides 244
10.2 Polycrystalline Si/Oxide Interfaces 248
10.3 Complex Metal Electrodes on Insulators 254
10.4 Modification of the Conductor/Insulator Barriers 259
Chapter 11 Spectroscopy of Charge Traps in Thin Insulating SiO[sub(2)] Layers 262
11.1 Trap Classification through Capture Cross-Section 263
11.2 Electron Traps in SiO[sub(2)] 265
11.2.1 Attractive Coulomb traps 265
11.2.2 Neutral electron traps in SiO[sub(2)] 266
11.2.3 Repulsive electron traps in SiO[sub(2)] 268
11.3 Hole Traps in SiO[sub(2)] 268
11.3.1 Attractive Coulomb hole traps 269
11.3.2 Neutral hole traps in SiO[sub(2)] 269
11.4 Proton Trapping in SiO[sub(2)] 273
Chapter 12 Conclusions 277
References 280
Index 308
A 308
B 308
C 308
D 309
E 309
F 310
G 310
H 310
I 310
L 311
M 311
N 311
O 311
P 311
Q 312
R 312
S 312
T 312
W 312
Y 312
Erscheint lt. Verlag | 7.7.2010 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Analytische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
ISBN-10 | 0-08-055589-6 / 0080555896 |
ISBN-13 | 978-0-08-055589-8 / 9780080555898 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich