Cryogenic Engineering (eBook)
XII, 374 Seiten
Springer New York (Verlag)
978-0-387-46896-9 (ISBN)
This is a benchmark reference work on Cryogenic Engineering which chronicles the major developments in the field. Starting with an historical background, this book reviews the development of data resources now available for cryogenic fields and properties of materials. It presents the latest changes in cryopreservation and the advances over the past 50 years. The book also highlights an exceptional reference listing to provide referral to more details.
Cryogenic Engineering: Fifty Years of Progress is a benchmark reference work which chronicles the major developments in the field. Starting with an historical background dating to the 1850s, this book reviews the development of data resources now available for cryogenic fields and properties of materials. The advances in cryogenic fundamentals are covered by reviews of cryogenic principles, cryogenic insulation, low-loss storage systems, modern liquefaction processes, helium cryogenics and low-temperature thermometry. Several well-established applications resulting from cryogenic advances include aerospace cryocoolers and refrigerators, use of LTS and HTS systems in electrical applications, and recent changes in cryopreservation. Extensive references are provided for the readers interested in the details of these cryogenic engineering advances.
Preface 6
Contents 8
About the Authors 10
Background Information 13
Historical Summary of Cryogenic Activity Prior to 19501 14
Abstract 14
1.1 Introduction 14
1.2 The Beginning of Cryogenics 17
1.3 Cryogenic Applications Around 1950 29
1.4 Summary 36
References 36
Advances in Cryogenic Data Development over the Past 50 Years 39
Sources of Cryogenic Data and Information 40
Abstract 40
2.1 Introduction 40
2.2 Early Sources of Data 41
2.3 National Bureau of Standards Cryogenic Data Center 42
2.3.1 Data Compilation 43
2.3.2 Documentation 43
2.3.3 Technical Services 43
2.4 Period after National Bureau of Standards Data Center 45
2.4.1 Commercial Electronic Databases 45
2.4.2 Book on Cryogenic Materials 45
2.4.3 Cryogenic Information Center 45
2.4.4 Information Resources: Defense Technical Information Center and the Information Analysis Centers 51
2.4.5 National Institute of Standards and Technology 54
2.4.6 Vendor Data Packages 55
2.4.7 NASA Centers 55
2.4.8 Universities 55
2.4.9 New Book Releases 55
2.4.10 Monographs 56
2.5 Plans for Data Retrieval and Material Properties 58
2.6 Conclusions 58
References 59
Trends and Advances in Cryogenic Materials 61
Abstract 61
3.1 Introduction 61
3.2 Trends in Cryogenic Materials Research 62
3.3 Advances in Cryogenic Materials R& D
3.3.1 Fracture Mechanics 69
3.3.2 Austenitic Steel Advancements 74
3.3.3 Nonmetallic Composite Electrical Insulation 81
3.3.4 Superconductors 88
3.3.5 Other Advances 88
3.4 General Discussion 89
References 89
History and Applications of Nonmetallic Materials 93
Abstract 93
4.1 Introduction 93
4.2 History and Materials Development 94
4.3 Applications and Properties 4.3.1 Ceramics 95
4.3.2 Polymers 98
4.3.3 Fiber Composites 104
4.3.4 Functional Nonmetallics 108
4.3.5 Polarization Properties 109
References 110
General Reading 110
Improvement in Cryogenic Fundamentals over the Past 50 Years 111
Advances in Cryogenic Principles 112
Abstract 112
5.1 Introduction 112
5.2 Thermodynamics 113
5.3 Heat Transfer 114
5.4 Gas Separation Systems 118
5.5 Fluid Flow and Convective Heat Transfer 121
5.6 Technical Presentations 122
5.7 Conclusions 123
Nomenclature 123
Greek symbols 124
References 124
Insulation Progress since the Mid-1950s 127
Abstract 127
6.1 Introduction 127
6.2 Vacuum Insulation 128
6.3 Powder Insulation 129
6.3.1 Nonevacuated Powders 129
6.3.2 Evacuated Powders and Fibrous Insulations 130
6.3.3 Opacified-Powder Insulations 131
6.3.4 Microsphere Insulation 131
6.4 Foam and Fiber Insulations 132
6.5 Multilayer Insulation 133
6.6 Summary 136
References 138
Development of Low-Loss Storage of Cryogenic Liquids over the Past 50 Years 141
Abstract 141
7.1 Introduction 141
7.2 Heat Flows into a Cryogenic System 143
7.3 Vapor Cooling to Reduce Heat In-Leaks 143
7.4 Vapor-Cooled Radiation Shields 144
7.5 Gas-Purged Insulations 144
7.6 Evacuated Powder Insulations 145
7.7 Evacuated Multilayer Insulations 145
7.8 Multi-Shielding 146
7.9 Materials of Construction 146
7.10 Evaporation Instabilities 146
7.11 Particular Storage and Containment Developments 7.11.1 Liquid Helium Usage and Nuclear Magnetic Resonance, Magnetic Resonance Imaging and Magneto- Encephalograph Systems 147
7.11.2 Superfluid Helium Usage in the Large Hadron Collider, CERN 148
7.11.3 Liquid Hydrogen for Fuel Cells 148
7.11.4 Liquid Neon and Liquid Air Coolants for Ceramic Superconductors at High Field 149
7.11.5 Liquid Nitrogen as Standard Refrigerant for Food Freezing, Cryopreservation, Cryosurgery, etc. 149
7.11.6 Liquid-Gas Cylinders 149
7.11.7 Liquefied Natural Gas and Liquefied Petroleum Gas in the Future 150
7.11.8 Cryogen-Free Operation 150
7.12 Conclusions 151
References 152
Fifty-YearsÌ Development of Cryogenic Liquefaction Processes 153
Abstract 153
8.1 Introduction 153
8.2 Cryogenic Air Separation: Oxygen and Nitrogen 154
8.2.1 Purification and Heat Exchanges 154
8.2.2 Distillation 155
8.2.3 Other Technical Developments 156
8.2.4 Liquid Pump Plants 158
8.2.5 Enhanced Oil Recovery 159
8.2.6 Summary: Air Separation 159
8.3 Hydrogen Liquefaction 159
8.3.1 Ortho- to Para-Hydrogen Conversion 159
8.3.2 Hydrogen Liquefier Cycles 161
8.3.3 Summary: Hydrogen Liquefiers 161
8.4 Liquefied Natural Gas 161
8.4.1 Feed Pre-Purification 162
8.4.2 Heat Exchangers 163
8.4.3 Compressors and Drivers, etc. 164
8.4.4 Expanders 164
8.4.5 Plant Efficiency and Specific Powers 164
8.4.6 Summary: Liquefied Natural Gas 164
8.5 Overall Review 165
References 165
Advances in Helium Cryogenics 168
Abstract 168
9.1 Introduction 168
9.2 Three Major Developments in Helium Cryogenics 170
9.2.1 Large Refrigerator/Liquefiers for Particle Accelerators 171
9.2.2 Space-Based He II Cryogenic Systems 174
9.2.3 4 K Regenerative Cryocoolers 177
9.3 Other Significant Developments in Helium Cryogenics 181
9.3.1 Small Cryocoolers for Intermediate Temperature Applications 181
9.3.2 Improvements in Rotating Machinery for Low- Temperature Helium Service 181
9.3.3 Production of Standardized Liquid Helium Cryostats 182
9.3.4 182
Dilution Refrigeration 182
9.3.5 Magnetic Refrigeration 183
References 183
Lessons Learned in 50 Years of Cryogenic Thermometry 186
Abstract 186
10.1 Introduction 186
10.2 Temperature Scales 10.2.1 Thermodynamic Temperature 188
10.2.2 Empirical Temperature 188
10.2.3 International Temperature Scales 190
10.2.4 The 2005 Redefinition of the International Scale 191
10.2.5 Reference Points for Thermometry 193
10.2.6 Ideal Substances versus Standard Reference Materials 194
10.2.7 Types of Cryogenic Reference Points 195
10.3 Thermometry 10.3.1 Gas Thermometry Below 273.16 K 203
10.3.2 Vapor-Pressure Thermometry 208
10.3.3 215
Melting Curve Thermometry 215
10.4 Electric Thermometers for Cryogenics 216
10.4.1 The Choice of Cryogenic Thermometers 216
References 226
Cryogenic Applications Development Over the Past 50 Years 229
Aerospace Coolers: A 50-Year Quest for Long- Life Cryogenic Cooling in Space 230
Abstract 230
11.1 Introduction 230
11.1.1 Cryogenic Applications in Space 231
11.1.2 Chapter Organization 233
11.2 1955 to 1965: The Birth of the Space Program 233
11.3 1965 to 1975: Race to the Moon, First Cryogenics in Space 234
11.3.1 1965Ò1975 Cryogenic Missions 235
11.3.2 1965Ò1975 R& D Emphasis
11.4 1975 to 1985: The Struggle for Long-Life Coolers 241
11.4.1 1975Ò1985 Flight Applications 242
11.4.2 1975Ò1985 R& D Emphasis
11.5 1985Ò1995: Long-Life Cryocoolers Become a Reality 254
11.5.1 1985Ò1995: Cryogenic Missions 254
11.5.2 1985Ò1995 R& D Emphasis
11.6 1995Ò2005: Long-Life Cryocoolers and Large Cryostats Become Mature Space Technologies 264
11.6.1 1995Ò2005 Flight Applications 265
11.6.2 1995Ò2005 R& D Emphasis
11.7 Summary 281
References 282
Understanding Properties and Fabrication Processes of Superconducting Nb3Sn Wires 290
Abstract 290
12.1 Introduction 290
12.2 Superconducting Properties of Alloyed Nb3Sn 12.2.1 Critical- Current Densities 292
12.2.2 Intrinsic Superconducting Properties 293
12.3 Chemical Compositions of Alloyed Nb3Sn 12.3.1 Bulk Compositions 295
12.3.2 Grain-Boundary Compositions 297
12.4 Effects of Alloying on Layer and Grain Growth 300
12.5 Flux-Line Pinning and Field Dependence of Critical Currents 12.5.1 Flux Pinning by Grain Boundaries 302
12.5.2 Scaling Law for Jc(µ0H) 304
12.6 The State-of-the-Art Multifilamentary Nb3Sn Wires 306
12.6.1 The Bronze Process 306
12.6.2 The Internal-Sn Process 307
References 311
High-Temperature Superconductors: 314
Abstract 314
13.1 Introduction 314
13.2 YBCO, the Workhorse 318
13.3 Melt-Processed YBCO 319
13.4 YBCO-Coated Conductors: Second-Generation High- Temperature Superconductors 320
13.4.1 Substrates 321
13.4.2 Buffer-Layer Architectures 323
13.4.3 YBCO Deposition 323
13.4.4 Conclusions and Prospects for Coated Conductors 326
13.5 Applications of (Bi,Pb) 326
13.6 The First High-Temperature Superconductivity Wires 327
13.7 The Oxide-Powder-in-Tube Process 328
13.7.1 Powder 329
13.7.2 Ag Sheath 329
13.7.3 Mechanical Deformation to Form the Green Wire 330
13.7.4 Heat Treatment 1 (HT1) 331
13.7.5 Rolling 333
13.7.6 Heat Treatment 2 (HT2) 334
13.8 Future Work 337
13.9 Summary 339
References 339
A Paradigm Shift in Cryopreservation: Molecular- Based Advances to Improve Outcome 345
Abstract 345
14.1 Introduction 345
14.1.1 Biopreservation 346
14.1.2 The Hypothermic Continuum 347
14.2 Cryopreservation 348
14.2.1 Current Status: Traditional Approaches to Cryopreservation 349
14.3 Understanding Cell Death 14.3.1 Molecular- Based Cellular Response to Preservation 349
14.3.2 Modes of Cell Death 350
14.3.3 Physical Events Leading to Cell Death 350
14.3.4 Necrosis: Pathological Cell Death 350
14.3.5 Apoptosis: Gene-Regulated Cell Death 351
14.3.6 Induction of Apoptosis 351
14.3.7 Transitional Cell Death 352
14.4 Molecular-Based Cryopreservation-Induced Cell Death 353
14.4.1 Apoptosis in Cryopreservation 353
14.4.2 Cryopreservation-Induced Delayed-Onset Cell Death 354
14.4.3 Initiation of Cryopreservation-Induced Molecular Death 355
14.4.4 Effects of Cryopreservation on Cell Function 355
14.4.5 Control of Cryopreservation-Induced Molecular Response 356
14.4.6 Preservation Solution Design 356
14.4.7 Extracellular Preservation Media 357
14.4.8 Intracellular Preservation Media 357
14.4.9 Ionic Composition 358
14.4.10 pH Buffering 359
14.4.11 Osmotic Control 359
14.4.12 Energy Substrates 359
14.4.13 Free-Radical Scavengers 359
14.5 Effects of New Solution Design on Cryopreservation Outcome 360
14.5.1 Application of Targeted Apoptotic Control 361
14.6 Summary 362
References 362
Index 372
Erscheint lt. Verlag | 12.11.2007 |
---|---|
Reihe/Serie | International Cryogenics Monograph Series | International Cryogenics Monograph Series |
Zusatzinfo | XII, 374 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Development • fluid- and aerodynamics • Material • metals • Superconductivity |
ISBN-10 | 0-387-46896-X / 038746896X |
ISBN-13 | 978-0-387-46896-9 / 9780387468969 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich