Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introduction to Evolutionary Algorithms (eBook)

, (Autoren)

eBook Download: PDF
2010 | 2010
XVI, 422 Seiten
Springer London (Verlag)
978-1-84996-129-5 (ISBN)

Lese- und Medienproben

Introduction to Evolutionary Algorithms - Xinjie Yu, Mitsuo Gen
Systemvoraussetzungen
181,89 inkl. MwSt
(CHF 177,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Xinjie Yu is an associate professor of the department of electrical engineering at Tsinghua University. He received his PhD in Electrical Engineering from Tsinghua University in 2001. Then he served as a lecturer at Tsinghua University until 2005 and was promoted to the position of associate professor; a role he has held ever since. He was a visiting scholar at the Massachusetts Institute of Technology in 2003 and at the Graduate School of Information, Production and Systems of Waseda University in 2008 and 2009 separately. Dr Yu's research interests include evolutionary computation (especially genetic algorithms, evolution strategy, multimodal optimization, and multiobjective optimization) and its applications in various aspects of electrical engineering, power electronics, wireless energy transferring, etc. Mitsuo Gen is a visiting scientist at the Fuzzy Logic Systems Institute (FLSI), Iizuka, Japan, which he joined in August 2009 after retiring from his position as a professor in the Graduate School of Information, Production and Systems, Waseda University; a role he had held since April 2003. He received a PhD in Engineering from Kogakuin University in 1974 and a PhD in Informatics from Kyoto University in 2006. He worked at Ashikaga Institute of Technology for several years: as a lecturer during the period 1974-1980, an associate professor during the period 1980-1987, and as a professor during the period 1987-2003. He was a visiting associate professor at the University of Nebraska-Lincoln from 1981-1982, and a visiting professor at the University of California at Berkeley from 1999-2000, at POSTECH in Fall 2008 and at the Asian Institute of Technology in Spring 2009. His research interests include genetic and evolutionary algorithms, artificial neural networks, fuzzy logic, and their applications to scheduling, network design, logistics systems, etc. He has authored several books, such as Genetic Algorithms and Engineering Design, (1997), Genetic Algorithms and Engineering Optimization, (2000) with Dr. R. Cheng, and Network Models and Optimization: Multiobjective Genetic Algorithm Approach, Springer, London (2008) with Dr. R. Cheng and Dr. L. Lin. He has edited Intelligent and Evolutionary Systems, Studies in Computational Intelligence, vol. 187, Springer, Heidelberg (2009) with Dr. M. Gen et al., and has published more than 200 international journal papers. His books and papers have been cited more than 5000 times by researchers throughout the world.
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: genetic algorithms, differential evolution, swarm intelligence, and artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Xinjie Yu is an associate professor of the department of electrical engineering at Tsinghua University. He received his PhD in Electrical Engineering from Tsinghua University in 2001. Then he served as a lecturer at Tsinghua University until 2005 and was promoted to the position of associate professor; a role he has held ever since. He was a visiting scholar at the Massachusetts Institute of Technology in 2003 and at the Graduate School of Information, Production and Systems of Waseda University in 2008 and 2009 separately. Dr Yu's research interests include evolutionary computation (especially genetic algorithms, evolution strategy, multimodal optimization, and multiobjective optimization) and its applications in various aspects of electrical engineering, power electronics, wireless energy transferring, etc. Mitsuo Gen is a visiting scientist at the Fuzzy Logic Systems Institute (FLSI), Iizuka, Japan, which he joined in August 2009 after retiring from his position as a professor in the Graduate School of Information, Production and Systems, Waseda University; a role he had held since April 2003. He received a PhD in Engineering from Kogakuin University in 1974 and a PhD in Informatics from Kyoto University in 2006. He worked at Ashikaga Institute of Technology for several years: as a lecturer during the period 1974–1980, an associate professor during the period 1980–1987, and as a professor during the period 1987–2003. He was a visiting associate professor at the University of Nebraska-Lincoln from 1981–1982, and a visiting professor at the University of California at Berkeley from 1999-2000, at POSTECH in Fall 2008 and at the Asian Institute of Technology in Spring 2009. His research interests include genetic and evolutionary algorithms, artificial neural networks, fuzzy logic, and their applications to scheduling, network design, logistics systems, etc. He has authored several books, such as Genetic Algorithms and Engineering Design, (1997), Genetic Algorithms and Engineering Optimization, (2000) with Dr. R. Cheng, and Network Models and Optimization: Multiobjective Genetic Algorithm Approach, Springer, London (2008) with Dr. R. Cheng and Dr. L. Lin. He has edited Intelligent and Evolutionary Systems, Studies in Computational Intelligence, vol. 187, Springer, Heidelberg (2009) with Dr. M. Gen et al., and has published more than 200 international journal papers. His books and papers have been cited more than 5000 times by researchers throughout the world.

Evolutionary Algorithms.- Simple Evolutionary Algorithms.- Advanced Evolutionary Algorithms.- Dealing with Complicated Problems.- Constrained Optimization.- Multimodal Optimization.- Multiobjective Optimization.- Combinatorial Optimization.- Brief Introduction to Other Evolutionary Algorithms.- Swarm Intelligence.- Artificial Immune Systems.- Genetic Programming.

Erscheint lt. Verlag 10.6.2010
Reihe/Serie Decision Engineering
Decision Engineering
Zusatzinfo XVI, 422 p. 168 illus.
Verlagsort London
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Schlagworte algorithms • artificial immune systems • Artificial Life • Combinational Optimization • combinatorial optimization • Complexity • data structures • Evolution • evolutionary algorithm • evolutionary algorithms • Genetic Algorithm • Genetic algorithms • genetic programming • Kernel • learning • Multi-Objective Optimization • Operations Research • Optimization • Particle swarm optimization • Swarm intelligence
ISBN-10 1-84996-129-8 / 1849961298
ISBN-13 978-1-84996-129-5 / 9781849961295
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65