Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (eBook)

eBook Download: PDF
2007 | 2008
XVIII, 318 Seiten
Springer New York (Verlag)
978-0-387-74101-7 (ISBN)

Lese- und Medienproben

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis - Uffe B. Kjærulff, Anders L. Madsen
Systemvoraussetzungen
79,99 inkl. MwSt
(CHF 78,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence. This book provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding.


Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.

Preface 7
Contents 12
Fundamentals 17
1 Introduction 18
1.1 Expert Systems 18
1.2 Rule-Based Systems 20
1.3 Bayesian Networks 23
1.4 Bayesian Decision Problems 28
1.5 When to Use Probabilistic Nets 29
1.6 Concluding Remarks 30
2 Networks 31
2.1 Graphs 32
2.2 Graphical Models 34
2.3 Evidence 37
2.4 Causality 38
2.5 Flow of Information in Causal Networks 39
2.6 Two Equivalent Irrelevance Criteria 45
2.7 Summary 49
Exercises 50
3 Probabilities 51
3.1 Basics 52
3.2 Probability Distributions for Variables 54
3.3 Probability Potentials 58
3.4 Fundamental Rule and Bayes’ Rule 64
3.5 Bayes’ Factor 67
3.6 Independence 68
3.7 Chain Rule 72
3.8 Summary 74
Exercises 75
4 Probabilistic Networks 77
4.1 Reasoning Under Uncertainty 78
4.2 Decision Making Under Uncertainty 88
4.3 Object-Oriented Probabilistic Networks 105
4.4 Dynamic Models 112
4.5 Summary 116
Exercises 117
5 Solving Probabilistic Networks 121
5.1 Probabilistic Inference 122
5.2 Solving Decision Models 138
5.3 Solving OOPNs 150
5.4 Summary 151
Exercises 151
Model Construction 154
6 Eliciting the Model 155
6.1 When to Use Probabilistic Networks 156
6.2 Identifying the Variables of a Model 159
6.3 Eliciting the Structure 164
6.4 Model Verification 171
6.5 Eliciting the Numbers 175
6.6 Concluding Remarks 182
6.7 Summary 184
Exercises 187
7 Modeling Techniques 189
7.1 Structure Related Techniques 189
7.2 Probability Distribution Related Techniques 208
7.3 Decision Related Techniques 224
7.4 Summary 237
Exercises 237
8 Data-Driven Modeling 239
8.1 The Task and Basic Assumptions 240
8.2 Structure Learning From Data 241
8.3 Batch Parameter Learning From Data 258
8.4 Sequential Parameter Learning 264
8.5 Summary 266
Exercises 267
Model Analysis 270
9 Conflict Analysis 271
9.1 Evidence Driven Conflict Analysis 272
9.2 Hypothesis Driven Conflict Analysis 277
9.3 Summary 279
Exercises 279
10 Sensitivity Analysis 282
10.1 Evidence Sensitivity Analysis 283
10.2 Parameter Sensitivity Analysis 290
10.3 Summary 296
Exercises 297
11 Value of Information Analysis 300
11.1 VOI Analysis in Bayesian Networks 301
11.2 VOI Analysis in Influence Diagrams 306
11.3 Summary 309
Exercises 310
References 313
List of Symbols 318
Index 320

Erscheint lt. Verlag 20.12.2007
Reihe/Serie Information Science and Statistics
Information Science and Statistics
Zusatzinfo XVIII, 318 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Artificial Intelligence • Bayesian Network • Calculus • classification • Data Mining • influence diagram • Information • Intelligence • Intelligent Systems • learning • Modeling • probabilistic graphical model • Probabilistic Network • Uncertainty • verification
ISBN-10 0-387-74101-1 / 0387741011
ISBN-13 978-0-387-74101-7 / 9780387741017
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95