Self-Consistent Methods for Composites (eBook)
XVI, 384 Seiten
Springer Netherlands (Verlag)
978-1-4020-6664-1 (ISBN)
This timely text is the first monograph to develop self-consistent methods and apply these to the solution of problems of electromagnetic and elastic wave propagation in matrix composites and polycrystals. Predictions are compared with experimental data and exact solutions. Explicit equations and efficient numerical algorithms for calculating the velocities and attenuation coefficients of the mean (coherent) wave fields propagating in composites and polycrystals are presented.
The theory of heterogeneous materials has been intensively developed during the past few decades. The main reason for the interest of many researchers in this part of the mechanics of solids is the wide area of application of hete- geneous materials in modern material engineering. Self-consistent methods form a well-known branch of the theory of heterogeneous materials. In most books devoted to the mechanics and physics of heterogeneous media, the reader can ?nd self-consistent solutions. But there are no books covering the entire spectrum of self-consistent methods in application to the calculation of static and dynamic properties of heterogeneous materials. This book has been written to cover this gap. It is written for engineers because here they can ?nd the equations for the e?ective properties of composites reinforced with various types of inclusions. The main advantage of self-consistent methods is that they give relatively simple equations for the e?ective parameters of composites. Such equations for static and dynamic properties of matrix composites reinforced with va- oustypesofinclusions,forporousmedia,mediawithcracksandotherdefects, for polycrystals, etc., are widely used in engineering practice, and many new self-consistent solutions are presented in the book. This book is written also for scholars who wish to develop the theory of heterogenousmedia.Inthebooktheywill ?ndthebasicideasandalgorithms for the construction of self-consistent solutions. The book shows how these methods may be applied to composites with inclusions of complex structures, toproblemsofwavepropagation,forcalculationofhigherstatisticalmoments of physical ?elds in composites. Various ways for improving self-consistent solutions are proposed and discussed.
1. Introduction
2. An elastic medium with sources of external and internal stresses
2.1 Medium with sources of external stresses
2.2 Medium with sources of internal stresses
2.3 Discontinuities of elastic fields in a medium with sources of external and internal stresses
2.4 Elastic fields far from the sources
2.5 Notes
3. Equilibrium of a homogeneous elastic medium with an isolated inclusion
3.1 Integral equations for a medium with an isolated inhomogeneity
3.2 Conditions on the interface between two media
3.3 Ellipsoidal inhomogeneity
3.4 Ellipsoidal inhomogeneity in a constant external field
3.5 Inclusion in the form of a plane layer
3.6 Spheroidal inclusion in a transversely isotropic medium
3.7 Crack in an elastic medium
3.8 Elliptical crack
3.9 Radially heterogeneous inclusion
3.9.1 Elastic fields in a medium with a radially heterogeneous inclusion
3.9.2 Thermoelastic problem for a medium with a radially heterogeneous inclusion
3.10 Multi-layered spherical inclusion
3.11 Axially symmetric inhomogeneity in an elastic medium
3.12 Multi-layered cylindrical inclusion
3.13 Notes
4. Thin inclusion in a homogeneous elastic medium
4.1 External expansions of elastic fields
4.2 Properties of potentials (4.4) and (4.5)
4.3 External limit problems for a thin inclusion
4.3.1 Thin soft inclusion
4.3.2 Thin hard inclusion
4.4 Internal limiting problems and the matching procedure
4.5 Singular models of thin inclusions
4.6 Thin ellipsoidal inclusions
4.7 Notes
5. Hard fiber in a homogeneous elastic medium
5.1 External and internal limiting solutions
5.2 Principal terms of the stress field inside a hard fiber
5.3 Stress fields inside fibers of various forms
5.3.1 Cylindrical fiber
5.3.2 Prolate ellipsoidal fiber
5.3.3 Fiber in the form of a double cone
5.4 Curvilinear fiber
5.5 Notes
6. Thermal and electric fields in a medium with an isolated inclusion
6.1 Fields with scalar potentials in a homogeneous medium with an isolated inclusion
6.2 Ellipsoidal inhomogeneity
6.2.1 Constant external field
6.2.2 Linear external field
6.2.3 Spheroidal inhomogeneity in a transversely isotropic medium
6.3 Multi-layered spherical inclusion in a homogeneous medium
6.4 Thin inclusion in a homogeneous medium
6.5 Axisymmetric fiber in a homogeneous media
7. Homogeneous elastic medium with a set of isolated inclusion
7.1 The homogenization problem
7.2 Integral equations for the elastic fields in a medium with isolated inclusions
7.3 Tensor of the effective elastic moduli
7.4 The effective medium method and its versions
7.4.1 Differential effective medium method
7.5 The effective field method
7.5.1 Homogeneous elastic medium with a set of ellipsoidal inclusions
7.5.2 Elastic medium with a set of spherically layered inclusion
7.6 The Mon-Tanaka method
7.7 Regular lattices
7.8 Thin inclusions in a homogeneous elastic medium
7.9 Elastic medium reinforced with hard thin flakes or bands
7.9.1 Elastic medium with thin hard spheroids (flakes) of the same orientation
7.9.2 Elastic medium with thin hard spheroids homoge neousl distributed over the orientations
7.9.3 Elastic medium with thin hard unidirected bands of the same orientation
7.10 Elastic media with thin soft inclusions and cracks
7.10.1 Thin soft inclusions of the same orientation
7.10.2 Homogeneous distribution of thin soft inclusions over the orientations
7.10.3 Elastic medium with regular lattices of thin inclusions
7.11 Plane problem for a medium with a set of thin inclusions
7.11.1 A set of thin soft elliptical inclusions of the same orientation
7.11.2 Homogeneous distribution of thin inclusions over the orientations
7.11.3 Regular lattices of thin inclusions in plane
7.11.4 A triangular lattice of cracks
7.11.5 Col
Erscheint lt. Verlag | 20.12.2007 |
---|---|
Reihe/Serie | Solid Mechanics and Its Applications | Solid Mechanics and Its Applications |
Zusatzinfo | XVI, 384 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | Composite material • composite materials • Crystal • effective properties • Elasticity • elastic waves • electromagnetic waves • heterogeneous materials • Phase • self-consistent methods • Thermoelasticity • Wave |
ISBN-10 | 1-4020-6664-3 / 1402066643 |
ISBN-13 | 978-1-4020-6664-1 / 9781402066641 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich