Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Microwave Radiation of the Ocean-Atmosphere (eBook)

Boundary Heat and Dynamic Interaction
eBook Download: PDF
2009 | 2010
XVI, 160 Seiten
Springer Netherlands (Verlag)
978-90-481-3206-5 (ISBN)

Lese- und Medienproben

Microwave Radiation of the Ocean-Atmosphere -  Alexander Grankov,  Alexander Milshin
Systemvoraussetzungen
117,69 inkl. MwSt
(CHF 114,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
We will show in this monograph some possibilities of using the potential of satellite passive microwave radiometric methods for the analysis of variations of heat and dynamic processes in the ocean-atmosphere interface in a wide range of time scales - from mesometeorogical (hours, daily) to seasonal (month) and multiyear (climatic) ones. The most essential mechanisms of intercommunication of natural microwave radiation of the system ocean-atmosphere (SOA) with the vertical turbulence fluxes of sensible, latent heat, as well as the momentum at the boundary of the SOA are studied. We will consider the turbulence heat fluxes as the factors generated by the c- otic movements in the atmosphere, when every small individual part of air is moved irregularly. Here, one can observe a transfer of the energy from large-scale to sma- scales; the average distance between the air particles is increased with a time. Also, the potential of remote sensing the characteristics of heat and water adv- tion and their accumulation in the atmosphere boundary layer are demonstrated. In these studies, we mean mainly the middle and high latitudes of the North Atlantic, which are forming the weather conditions and climatic trends over Europe and European territories of the Russia.
We will show in this monograph some possibilities of using the potential of satellite passive microwave radiometric methods for the analysis of variations of heat and dynamic processes in the ocean-atmosphere interface in a wide range of time scales - from mesometeorogical (hours, daily) to seasonal (month) and multiyear (climatic) ones. The most essential mechanisms of intercommunication of natural microwave radiation of the system ocean-atmosphere (SOA) with the vertical turbulence fluxes of sensible, latent heat, as well as the momentum at the boundary of the SOA are studied. We will consider the turbulence heat fluxes as the factors generated by the c- otic movements in the atmosphere, when every small individual part of air is moved irregularly. Here, one can observe a transfer of the energy from large-scale to sma- scales; the average distance between the air particles is increased with a time. Also, the potential of remote sensing the characteristics of heat and water adv- tion and their accumulation in the atmosphere boundary layer are demonstrated. In these studies, we mean mainly the middle and high latitudes of the North Atlantic, which are forming the weather conditions and climatic trends over Europe and European territories of the Russia.

0001086554.pdf 1
Anchor 1 4
Anchor 2 13
0001086549.pdf 15
Chapter 1 15
Parameters Accessible for the Satellite Microwave Radiometric Means and Their Relations with the Ocean–Atmosphere Interaction 15
1.1 Relationship Between Dielectric Properties, Physical and Chemical Parameters of the Water and Physical Characteristics o 15
1.1.1 Radiation Models of a Water Surface 15
1.1.2 Radiation Models of the Atmosphere and the SOA 18
1.2 Methods of Using the Data of Microwave and Infrared Radiometric Measurements for an Analysis of Heat Fluxes at the SOA B 19
1.2.1 Traditional Approach 19
1.2.2 Alternative Approach 23
1.3 Parameters of Heat Interchanges in the SOA, which are Directly Determined by Means of Satellite Microwave Radiometry 26
1.3.1 Preamble 26
1.3.2 Relations Between MCW Radiation, the SST, and the Wind Speed 27
1.3.3 Estimates of an Accuracy of the SST Determination 29
1.3.4 Perspective Methods of Resolution of the Problem of the SST Determination 32
1.4 Potential of Satellite Microwave Radiometric Methods for Determining the Meteorological Parameters of the Near-Surface 34
1.4.1 Climatic and Seasonal Scales 34
1.4.2 Synoptic Scales 38
1.5 Conclusion 42
References 43
0001086550.pdf 47
Chapter 2 47
Modeling of the SOA MCW and IR Characteristics and Their Relations With the Air–Sea Heat Interaction 47
2.1 Sensitivity of Microwave and Infrared Radiation of the System Ocean–Atmosphere to Mesometeorological Variations of Heat 47
2.1.1 Model of Heat Interchanges Between the Oceanic and Atmospheric Boundary Layers 47
2.1.2 Interrelations of MCW and IR Radiation Fluxes with Heat Fluxes in the System Ocean–Atmosphere 49
2.1.3 Results of Numerical Analysis of the Dynamics of Thermal and Electromagnetic Fluxes and Their Correlations in the Ocea 51
2.2 Correlation of the Brightness Temperature with an Intensity of the Ocean–Atmosphere Heat Interaction in the Synoptic Ran 56
2.2.1 Initial Data 56
2.2.2 Methods of Computation of the SOA Radiation 57
2.2.3 Results of Computations of the SOA Brightness Temperatures and Their Comparison with Heat Fluxes (Experiment ATLANTEX- 58
2.2.4 On the Mechanism of a Correlation Between the SOA Brightness Temperature and Interfacial Heat and Momentum fluxes 66
2.2.5 Response of the SOA Heat and MCW Radiation Characteristics on the Atmospheric Horizontal Circulation 71
2.3 Relations Between Monthly Mean Air–Sea Temperature Differences and SOA MCW and IR radiation 74
2.3.1 Statement of the Problem 74
2.3.2 Approximations and Limitations Used 75
2.3.3 Relations Between Natural Radiation and SOA Characteristics 77
2.3.4 Correlation Between Monthly Mean Differences of the Ocean Surface and Atmosphere Near-Surface Temperatures and the SOA 78
2.4 Brightness Temperature as the Characteristic of Seasonal and Interannual Dynamics of the Ocean–Atmosphere Heat Interacti 80
2.4.1 Tw., Ta – loops as Characteristics of Heat Exchange Between the Ocean and Atmosphere 80
2.4.2 Ways to Use the Brightness Temperature Loops for Estimation of Annual Heat Fluxes 82
2.5 Use of Satellite MCW Radiometric Methods to Determine the Role of Energy-Active Zones in the North Atlantic in Forming 84
2.5.1 Initial Point 84
2.5.2 Our Approach 85
2.6 Conclusion 87
References 88
0001086551.pdf 90
Chapter 3 90
Interconnection Between the Brightness Temperature and an Intensity of the Heat Ocean–Atmosphere Interaction: Experimental Re 90
3.1 Assimilation of Satellite-Derived Microwave Radiometric Data in Parameterizations of Heat Exchange Between the Ocean and 90
3.1.1 How it is Possible to Use the Parameter Q in Estimating the Synoptic Variations of Parameters e and Ta in Midl 90
3.1.2 Useful Parameterizations for This Approach 91
3.2 Experimental Studies of Interrelation Between the Brightness Temperature and Synoptic Heat and Impulse Fluxes (Based on 94
3.2.1 SSM/I Radiometer of the DMSP Satellites 94
3.2.2 Comparison of the SSM/I-Derived and Evaluated Synoptic Variations of the SOA Brightness Temperatures 97
3.2.3 Relations of the SSM/I-Derived Brightness Temperatures with the Near-Surface Fluxes of Heat and Impulse 100
3.2.4 Stability of the Relationships Between the Vessel and Their Satellite Estimates 103
3.3 Experimental Studies of Interrelation Between the Brightness Temperature and SOA Parameters in Front Zones 107
3.3.1 Synoptic Variability of the SOA Parameters and Its Brightness Temperature in the Region of the Subpolar Hydrological 107
3.3.2 Features of the Atmospheric Dynamics Observed in the Region of the SHF 107
3.3.3 Interrelation of the Brightness Temperature and Wind Direction in the Region of the SHF 111
3.4 Conclusion 114
References 116
0001086552.pdf 117
Chapter 4 117
Results of Studies of Heat and Dynamic Air–Sea Interactions with Passive Microwave Radiometric Methods at the Seasonal and C 117
4.1 Satellite-Derived Estimates of Monthly Mean Integral Parameters of the Atmosphere and Near-Surface Wind Speed 117
4.1.1 Monthly Mean Brightness Temperatures Observed with the SSM/I Radiometer Over the Energy-Active Zones of the North Atl 117
4.1.2 Monthly Mean SOA Parameters Retrieved with the SSM/I Radiometer over the Energy-Active Zones of the North Atlantic an 119
4.2 Estimates of Monthly Mean Heat Fluxes in the North Atlantic Using Data of the Satellite F-08 (DMSP) 121
4.2.1 Validation of the Monthly Mean Heat Fluxes Estimated from Satellites with Archival Data in Active Zones of the North A 121
4.2.2 Some Conclusions 122
4.3 Satellite-Derived Estimates of Multiyear (Climatic) Variability of the Surface Heat Fluxes in Active Zones of the North 123
4.3.1 Areas of Interests in the North Atlantic 123
4.3.2 Potential of the Radiometer SMM/I in Retrieving the Parameters V, Q, W and Estimating the Interannual Variability 125
4.3.3 Brightness Temperature as the Direct Characteristic of Heat Interaction in the Climatic Time Scales 128
4.4 Conclusion 132
References 132
0001086553.pdf 134
Chapter 5 134
Effectiveness of the Satellite MCW Radiometric Means of Studying the Air–Sea Interaction 134
5.1 Present-Day and Perspective Satellite Passive MCW Radiometric and Other Means of the Earth Remote Sensing and Their Poten 134
5.1.1 Prehistory and General Information 134
5.1.2 MCW Radiometer SMMR of the Nimbus-7 Satellite 135
5.1.3 DMSP MCW Radiometric Complex 135
5.1.4 SSM/I – Spe.ial Sensor Microwave/Imager 137
5.1.5 SSM/T – Atmospheric Temperature Profiler 137
5.1.6 SSM/T-2 – Atmospheric Water Vapor 137
5.1.7 SSMIS – Special Sensor Microwave Imager/Sounder 138
5.1.8 TRMM Complex 138
5.1.9 Meteor-3M No. 1 Complex 140
5.1.10 EOS Aqua Satellite Complex 142
5.1.10.1 AMSR-E – Advanced Microwave Scanning Radiometer 142
5.1.10.2 AMSU – Advanced Microwave Sounding Unit 142
5.1.10.3 HSB – Humidity Sounder for Brazil 143
5.1.10.4 AIRS – Atmospheric Infrared Sounder 143
5.1.10.5 MODIS – Moderate-Resolution Imaging Spectroradiometer 144
5.1.10.6 CERES – Clouds and the Earth’s Radiant Energy System 144
5.1.11 Complex of the ADEOS-II Satellite 145
5.1.12 Complex of the Sich-1M Satellite 145
5.1.13 The Measurement Complex of Russian Satellite Meteor-M No. 1 145
5.1.14 Complex of the NPOESS Satellite 149
5.1.15 Complex of the PROTEUS Satellite 151
5.1.16 Russian Sensing Complex “MKA-FKI” No. 1 151
5.2 Comparison of Potentials of the SSM/I and MTVZA Radiometers for Analysis of the Ocean-Atmosphere Interaction 153
5.2.1 Background of Study 153
5.2.2 Comparison of MTVZA Simulated and SSM/I-Derived Brightness Temperatures 155
5.2.3 Interrelation of the MTVZA and SSM/I Brightness Temperatures with Heat Fluxes 158
5.2.4 Comparison of the MTVZA and SSM/I Measurement Data 161
5.3 Conclusion 163
References 164
0001086555.pdf 166
Appendix 166
Key Terms and Abbreviations 166
Grankov_Index_O.pdf 167

Erscheint lt. Verlag 3.12.2009
Zusatzinfo XVI, 160 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik
Schlagworte air-sea interaction • ATLANTEX-90 • brightness temperature • heat and momentum surface fluxes • NEWFOUEX-88 • Radiation models • Remote Sensing/Photogrammetry • satellite radiometry • scale
ISBN-10 90-481-3206-1 / 9048132061
ISBN-13 978-90-481-3206-5 / 9789048132065
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich