Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Nano-Bio- Electronic, Photonic and MEMS Packaging (eBook)

eBook Download: PDF
2009 | 2010
XI, 761 Seiten
Springer US (Verlag)
978-1-4419-0040-1 (ISBN)

Lese- und Medienproben

Nano-Bio- Electronic, Photonic and MEMS Packaging -
Systemvoraussetzungen
245,03 inkl. MwSt
(CHF 239,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Nanotechnologies are being applied to the biotechnology area, especially in the area of nano material synthesis. Until recently, there has been little research into how to implement nano/bio materials into the device level. 'Nano and Bio Electronics Packaging' discusses how nanofabrication techniques can be used to customize packaging for nano devices with applications to biological and biomedical research and products. Covering such topics as nano bio sensing electronics, bio device packaging, NEMs for Bio Devices and much more.


Nanotechnologies are being applied to the biotechnology area, especially in the area of nano material synthesis. Until recently, there has been little research into how to implement nano/bio materials into the device level. "e;Nano and Bio Electronics Packaging"e; discusses how nanofabrication techniques can be used to customize packaging for nano devices with applications to biological and biomedical research and products. Covering such topics as nano bio sensing electronics, bio device packaging, NEMs for Bio Devices and much more.

Preface 4
Contents 5
Contributors 7
Nanomaterials for Microelectronic and Bio-packaging 10
1 Introduction 10
1.1 Interfaces of Carbon Nanotubes (CNTs)/Substrates for Electrical and Thermal Interconnects 11
1.2 Tin/Silver Alloy Nanoparticle Pastes for Low-Temperature Lead-Free Interconnect Applications 12
1.3 Enhanced Electrical Properties of Anisotropically Conductive Adhesive with -Conjugated Molecular Wire Junctions for Enhanced Electrical Properties 14
1.4 Low-Stress and High Thermal Conductive Underfill for Cu/Low- k Application 16
1.5 High-Dielectric Constant ( k ) Polymer Nanocomposites for Embedded Capacitor Applications 16
1.6 Bio-mimetic Lotus Surface 19
1.7 Molecular Dynamic (MD) Simulations in Nanomaterial Study 21
2 Conclusive Remarks 24
References 24
Nano-conductive Adhesives for Nano-electronics Interconnection 27
1 Introduction 28
2 Recent Advances on Nanoisotropic Conductive Adhesive (Nano-ICA) 33
2.1 ICAs with Silver Nanowires 33
2.2 Effect of Nano-sized Silver Particles to the Conductivity of ICAs 33
2.3 ICA Filled with Aggregates of Nano-sized Ag Particles 35
2.4 Nano-Ni Particle-Filled ICA 36
2.5 Nano-conductive Adhesives for Via-Filling Applications in Organic Substrates 36
2.6 Nano-ICAs Filled with CNT 37
2.6.1 Electrical and Mechanical Characterization of CNT-Filled ICAs 37
2.6.2 Effect of Adding CNT to the Electrical Properties of ICAs 38
2.6.3 Composites Filled with Surface-Treated CNTs 39
2.7 Inkjet Printable Nano-ICAs and Inks 39
3 Recent Advances of Nano-ACA/ACF 40
3.1 Low-Temperature Sintering of Nano-Ag-Filled ACA/ACF 40
3.2 Self-Assembled Molecular Wires for Nano-ACA/ACF 41
3.3 Silver Migration Control in Nano-silver-Filled ACA 43
3.4 ACF with Straight-Chain-Like Nickel Nanoparticles 44
3.5 Nanowire ACF for Ultra-fine-pitch Flip-Chip Interconnection 46
3.6 An In Situ Formation of Nano-conductive Fillers in ACA/ACF 46
3.7 CNT-Based Conductive Nanocomposites for Transparent, Conductive, and Flexible Electronics 47
4 Concluding Remarks 49
References 50
Biomimetic Lotus Effect Surfaces for Nanopackaging 54
1 Introduction 54
2 Thermodynamics Aspect of Superhydrophobic Surfaces 56
2.1 Contact Angle on a Rough Surface 56
2.2 Contact Angle Hysteresis 59
3 Low Surface Energy Materials 59
4 Surface Structure Effect 60
5 Approaches to Preparing Superhydrophobic Surface Coatings 64
5.1 Plasma Etching Techniques 64
5.1.1 Plasma Etching of Fluoropolymers 64
5.1.2 Plasma Etching of Si with Micromask 65
5.1.3 Plasma Etching of Poly(Dimethylsiloxane) (PDMS) 66
5.1.4 Plasma Etching of Polyethylene Terephthalate (PET) (Domain-Selective Plasma Etching) and Low-Density Polyethylene (LDPE, Different Etching Rate for Crystalline and Amorphous Phase) 67
5.2 Chemical Vapor Deposition (CVD) Process 69
5.3 Sol--Gel Process 71
5.4 Wet Chemical Etching 74
5.4.1 Metal-Assisted Etching 75
5.4.2 Dislocation Selective Chemical Etching and Other Etching Methods 76
5.5 Other Methods 77
5.5.1 Monodisperse Nanoparticles 77
5.5.2 Layer-by-Layer Self-assembly 78
6 Applications 80
6.1 Anticorrosion 81
6.2 Applications in MEMS Antistiction 83
6.3 Slip Flow in Microfluidics 84
6.4 Solar Cells 84
6.5 Bio-Assay 85
6.6 Superhydrophobic Surfaces for Outdoor Applications 87
References 88
Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials 93
1 Introduction 93
2 Structure and Properties of Carbon Nanotubes 96
2.1 Carbon Nanotube Structure 96
2.2 Electronic Structure and Electrical Properties 98
2.3 Separation of Metallic and Semiconducting SWNTs 100
2.4 Heat Transport 102
3 CNT Growth 104
3.1 Arc-Discharge and Laser Ablation Methods 104
3.2 Chemical Vapor Deposition (Common Thermal CVD, Plasma-Enhanced CVD, and Liquid Injection CVD) 105
4 Carbon Nanotubes for Interconnect Applications 107
5 Carbon Nanotubes as Thermal Interface Materials (TIMs) 109
5.1 A Brief Review of TIMs and Requirements for Next-Generation TIMs 109
5.2 Carbon Nanotube/Polymer Composites 110
5.3 Aligned Carbon Nanotube (ACNT) Based Thermal Interface Materials (TIMs) 112
5.4 ACNT TIM Synthesis on Bulk Copper Substrates 116
6 Assembling Technologies of ACNTs 118
6.1 Physical Transfer/Anchoring 119
6.2 Chemical Transfer 121
7 Graphene Nanoelectronics 125
8 Graphite Nanosheet/Polymer Composites Very Promising TIM Composite Materials 126
9 Thermal Property Measurement Techniques 127
9.1 Laser Flash Technique (LFA 447, Netzsch, Inc.) 127
9.2 Steady-State Measurement 128
9.3 Thermoreflectance Technique 128
9.4 Photoacoustic Technique 129
10 Future Needs 129
References 130
Nanomaterials via NanoSpray Combustion Chemical Vapor Condensation, and Their Electronic Applications 145
1 Introduction to Nanomaterials and Their Synthesis 145
2 NanoSpray Combustion Processing 147
3 Overview of Nanomaterials Capabilities 149
3.1 Single Metal Oxides and Phase Control 150
3.2 Multi-metal Oxides 152
3.3 Metal Phosphates 153
3.4 Metals 154
3.5 Nanocomposites 154
3.6 Nanodispersions (Not Solutions) 155
4 Applications of Nanomaterials Made by CCVC 155
4.1 Conductive Adhesives as Electronic Interconnects 156
4.2 Lithium-Ion Battery Electrodes for Energy Storage 158
4.3 Polymer Nanocomposites for Capacitors 164
4.4 Inorganic Nanocomposites for Nonlinear Optical Materials 167
5 Conclusions 170
References 171
1D Nanowire Electrode Materials for Power Sourcesof Microelectronics 173
1 Introduction 173
2 SnO2 Nanowires 174
3 Sn78 Ge22 Carbon Nanowires 178
4 Layered Li 0.88 [Li 0.18 Co0.33 Mn 0.49 ]O 2 Nanowires 183
5 Conclusions 188
References 188
Mechanical Energy Harvesting Using Wurtzite Nanowires 190
1 Introduction 190
2 Mechanical to Electrical Energy Conversion by Wurtzite Nanowires 191
2.1 Signal ZnO Wires 191
2.2 Aligned ZnO Nanowire Arrays 193
2.3 CdS Nanowires 196
3 Energy Conversion Mechanisms 196
4 Direct Current Nanogenerator 200
4.1 The DC Nanogenerator Model 201
4.2 Nanogenerator in Fluid and Three-Dimensional Integration 204
4.3 Performance Analysis -- The Carrier Density 206
4.4 Performance Analysis -- The Schottky Barrier 208
4.5 Output Improvement 211
5 Flexible Nanogenerator 214
5.1 ZnO Nanowires on Flexible Substrate 214
5.2 Power Fiber 216
6 Prospect 218
References 220
Nanolead-Free Solder Pastes for Low Processing Temperature Interconnect Applications in Microelectronic Packaging 222
1 Size-Dependent Melting Point of Tin Nanoparticles 228
2 Size-Dependent Melting of Tin/Silver Alloy Nanoparticles 234
3 Size-Dependent Melting of Tin/Silver/Copper Alloy Nanoparticles 238
4 Wetting Properties of Tin/Silver and Tin/Silver/Copper Alloy Nanoparticle Pastes 241
5 Conclusion 248
References 249
Introduction to Nanoparticle-Based Integrated Passives 252
1 Introduction and Background 252
2 History of Passive Technology 255
2.1 Next Generation IP Needs 257
2.2 Advantages of EPs 258
2.3 Applications of IPs 259
3 Nanotechnology and Nanoparticles 261
3.1 Synthesis of Nanoparticles 262
3.2 Nanocomposites 263
3.2.1 Nanocomposite-Embedded Capacitors 263
3.2.2 Nanocomposite-Embedded Inductors 270
3.2.3 Nanoparticle-Based Embedded Resistors 274
4 Summary 278
References 278
Thermally Conductive Nanocomposites 282
1 Model of Heat Transport 284
2 Thermal Contact Resistance 287
3 Thermal Conductivity Measurements 291
4 Composites with Metallic Fillers 301
5 Composites with Carbon Allotropies Fillers 305
6 Conclusive Remarks and Prospects 311
References 314
Physical Properties and Mechanical Behavior of Carbon Nano-tubes (CNTs) and Carbon Nano-fibers (CNFs) as Thermal Interface Materials (TIMs) for High-Power Integrated Circuit (IC) Packages: Review and Extension 320
1 Introduction 321
2 Youngs Modulus of Individual CNTs/CNFs 322
3 Tunneling Electron Microscopy (TEM) 323
4 Thermal Vibration Method 323
5 Method Based on External Electric Field-Induced Vibrations 324
6 Measurements Using Scanning Probe Microscope (SPM) 327
7 Method Using CNT Buckling 328
8 Buckling of CNT Shells 330
9 Effective Youngs Modulus of CNT/CNF Arrays 331
9.1 Stress--Strain Relationship of PECVD-Synthesized CNT Film 331
9.2 Stress--Strain Relationship of TECVD-Synthesized CNT Film 337
9.3 Effective Young's Modulus has a Certain Limit 338
10 CNT/CNF-Based TIMS: Requirements for Physical (Mechanical) Properties 340
10.1 CNT/CNF Compliance 340
10.2 Bonding Strength of CNTs to Its Substrate 344
11 Conclusions 348
12 Appendix 348
13.0.0 Calculated Interfacial Shearing Stress from the Measured Shearing Force in a Bi-material Assembly 348
References 351
On-Chip Thermal Management and Hot-Spot Remediation 353
1 Introduction 353
1.1 Potential Hot-Spot Cooling Solutions 357
1.1.1 Passive Cooling Solutions 357
1.1.2 Active Cooling Solutions 360
1.1.3 Solid-State Cooling Solutions 362
2 On-Chip Hot-Spot Cooling Using Thermoelectric Microcoolers 364
2.1 Principle of Conventional Thermoelectric Cooler (TEC) 365
2.2 Thermoelectric Cooling Materials and Devices 369
2.2.1 Thin-Film Thermoelectric Coolers (TFTECs) 370
2.2.2 Bulk Miniaturized Thermoelectric Coolers 372
2.2.3 Nanostructured Thermoelectric Cooler 374
2.2.4 Silicon Thermoelectric Materials and Microcoolers 376
2.3 Hot-Spot Cooling Using Silicon Thermoelectric Microcooler 380
2.3.1 Doping Concentration Effect 384
2.3.2 Microcooler Size Effect 386
2.3.3 Chip Thickness Effect 387
2.3.4 Electric Contact Resistance Effect 390
2.3.5 Hot-Spot Parameter Effect 391
2.4 Mini-Contact-Enhanced TEC for Hot-spot Cooling 393
2.4.1 Effect of Input Power on TEC 395
2.4.2 Effect of Mini-Contact Size 396
2.4.3 Effect of Thermoelectric Element Height 398
2.4.4 Effect of Thermal Contact Resistance 400
2.4.5 Experimental Demonstration 401
2.5 Applications in Biomedical Systems 404
3 On-Chip Hot-Spot Cooling Using Anisotropic Heat Spreader 405
3.1 Effect of In-Plane Spreader Thermal Conductivity 408
3.2 Variation of Spreader Thickness 411
3.3 Numerical Simulations and Contact Resistance Variation 416
3.4 Experimental Demonstration 418
4 On-Chip Hot-Spot Cooling Using Micro-Gap Cooler 421
4.1 Single-Phase Experiments 422
4.2 Application to Hot Spot Remediation 423
5 Conclusions 426
References 427
Some Aspects of Microchannel Heat Transfer 434
1 Fundamentals of Microchannel Pressure Drop and Heat Transfer 434
1.1 Single-Phase Flows 435
1.1.1 Simplified Model for Single-Phase Microchannel Heat Sink 435
1.1.2 Correlations for Friction Factor and Nusselt Number ( Wei and Joshi, 2003 ) 436
1.1.3 Thermal Resistance Network Analysis 437
1.2 Two-Phase (Liquid--Vapor) Flows 439
1.2.1 Two-Phase Flow Regimes for Microchannels 439
1.2.2 Pressure Drop Correlations and Models 441
1.2.3 Heat-Transfer Correlations and Models 443
1.2.4 Condensation in Microchannels 446
1.3 Rotating Flows 449
2 Numerical Techniques 450
2.1 Continuum Models 450
2.2 Molecular Models 450
3 Experimental Techniques 451
3.1 Measuring Full Field Flow Inside Microchannels Using Micro-PIV 452
3.1.1 Typical Micro-PIV System for Fluid Flow 453
3.1.2 Seeding Particles 455
3.1.3 Spatial Resolution and Depth of Measurement 456
3.1.4 Image Processing and Correlation Analysis 457
3.1.5 Velocity Profiles for Fully Developed Flow 459
3.2 Measuring Fluid Temperature Inside Microchannels 460
3.2.1 Temperature Measurement Using Micro-PIV 460
3.2.2 Two-Color Laser-Induced Fluorescence (LIF) for Temperature Measurement 462
3.2.3 TIRF for Simultaneous Measurement of the Temperature and Velocity for Near Regions 464
4 Microfabrication and Assembly 467
5 Application in Electronics Thermal Management 474
References 475
Nanoprobes for Live-Cell Gene Detection 481
1 Introduction 481
2 Fluorescent Probes for Live Cell RNA Detection 484
2.1 Tagged Linear ODN Probes 484
2.2 ODN Hairpin Probes 484
2.3 Fluorescent Protein-Based Probes 488
3 Probe Design and StructureFunction Relations 489
3.1 Target Specificity 489
3.2 Molecular Beacon Structure--Function Relations 490
3.3 Target Accessibility 492
3.4 Fluorophores and Quenchers 493
4 Cellular Delivery of Nanoprobes 494
5 Living Cell RNA Detection Using Molecular Beacons 497
5.1 Biological Significance 497
6 Engineering Challenges 499
References 503
Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips 507
1 Introduction 507
2 Packaging Schemes Based on Application 508
2.1 Portable and Point-of-Care (POC) Diagnostics and Analysis 508
2.1.1 Integrated BioMEMS Packaging Schemes 509
2.1.2 Portable BioMEMS Chip in Tandem with a Readout Box 513
2.1.3 Outlook for Portable Diagnostics 515
2.2 Implantable Devices 516
2.2.1 Drug Delivery Devices 516
2.2.2 Ocular Implants 518
2.2.3 Neural Interface Implants 520
2.2.4 Cardiovascular Implants 521
2.2.5 Implantable Biosensors 523
2.3 BioMEMS Packaging for Clinical Applications 524
2.4 General Research for the Life Sciences 525
2.4.1 Genetic Analysis via PCR and CE 526
2.4.2 Microarrays 529
2.4.3 Microfluidic Large-Scale Integration 531
2.4.4 Cell Culture and Assay 533
3 BioMEMS Chip Interfacing 535
3.1 Interfacing On-Chip Components in BioMEMS 535
3.1.1 Protecting Biomolecules with Intermediate Packaging Steps and Modification of Manufacturing Methods 535
3.1.2 Order of Manufacturing Steps 537
3.2 Interfacing BioMEMS with External Systems 538
3.2.1 Fluid Interconnect 539
3.2.2 Electrical Interconnect 540
3.2.3 Optical Interconnect 542
3.2.4 Thermal Interconnect 543
3.2.5 Mechanical Interconnect 543
4 Biocompatibility of BioMEMS 544
4.1 Biocompatibility of Fabrication and Packaging Materials 544
4.2 Surface Modification 545
4.2.1 Basic Principles of Biological Surface Chemistry -- Biorecognition 546
4.2.2 Surface Treatments for Common BioMEMS Materials 546
4.2.3 Modification of Surface Topography for Improved and Directed Cell Attachment and Growth 551
4.3 Other Considerations 551
5 Conclusion 552
References 552
Packaging of Biomolecular and Chemical Microsensors 566
1 Introduction 568
2 Chemical Sensors 569
2.1 ISFET Packaging 569
2.2 Microhotplate Packaging 575
2.3 Microcantilever Packaging 580
2.4 Metal Oxide High-Temperature Sensor Packaging 583
2.5 Microfluidic Sensor Array Packaging 584
2.6 Biomedical Devices 588
3 Packaging Technologies 594
3.1 Wafer-Level Bonding 595
3.2 Localized Bonding 597
3.3 PDMS Fabrication 597
3.3.1 Main Advantages and Disadvantages 597
3.3.2 Soft Lithography and Multilayer Devices 598
3.3.3 PDMS as a Sealing Material 601
3.4 Stereolithography-Based Packaging 602
4 Discussion of Future Prospects and Conclusions 606
References 608
Nanobiosensing Electronics and Nanochemistryfor Biosensor Packaging 613
1 Chapter Objectives 613
1 Introduction 614
1.1 Bioelectronics and Biosensors 614
1.2 Fundamentals of Biosensors and Micro/Nanosystems Packaging 615
2 Applications of Bioelectronics 619
2.1 Applications of Biosensors 619
(a) Clinical Diagnostics 620
(b) Drug Discovery 620
(c) Drug Abuse 620
(d) Genome Analysis 620
(e) Food Hygiene 621
(f) Industrial Bioprocess Control and Monitoring 621
(g) Environmental Safety 621
2.1.1 Advantages of Biosensors over Conventional Detection Systems 622
2.2 Applications of Other Bioelectronic Sensing Devices 622
(a) Multielectrode Array (MEA) 622
(b) Microphotodiode Array (MPDA) 623
3 Fundamentals of Biological Materials as Sensing Elements 624
4 Building Blocks of Biosensors 628
5 Biosensing Mechanisms 630
5.1 Immune Complex Formation 630
5.2 DNA Hybridization 631
5.3 Natural and Synthetic Receptors 632
5.4 Biocatalysts 633
6 Functionality of Various Transducers and Challenges 633
6.1 Electrochemical Method 633
6.2 Optical Method 633
6.3 Acoustic Wave Method 635
6.4 Electromechanical Method 636
6.5 Magnetic Method 637
6.6 Chemical and Enzymatic Method 638
6.7 Thermal Method 639
6.8 Challenges in Integration of Biomolecules with Interface Mechanisms and Signal Transduction 639
7 Nanostructures, Biomolecules, and Cells as Components of Biosensors 640
7.1 The Gold Nanoparticles 641
7.2 Magnetic Nanoparticles 642
7.3 Semiconductor Quantum Dots 643
7.4 Nanowire 644
7.5 Carbon Nanotubes (CNTs) 644
7.6 Actinyl Peroxide Compounds 645
7.7 Conductive Polymer Membrane 645
7.8 DNA, Proteins, and Cells 646
8 Biochemical Probe Design and Interfacing with Biosensors 646
8.1 Preparation of Protein Probe 646
8.1.1 Proteins Produced from Cell and Tissue Cultures 646
8.1.2 Proteins Produced by Gene Activation 646
8.1.3 Recombinant Protein Production 646
8.1.4 Production of Polyclonal and Monoclonal Antibodies 648
8.2 Synthesis of DNA/RNA Oligonucleotide Probes 648
8.3 Electrically Conductive Contact Surface Materials 649
8.4 The Process of Attachment or Immobilization of Biomolecules to the Surfaces 649
8.4.1 Surface Modification and Biofunctionalization of Carbon Nanotubes 649
8.4.2 Thiolated DNA for Self-Assembly on to Gold Transducers 651
8.4.3 Covalent Linkage to the Gold Surface 651
8.4.4 Covalent (Carboiimide) Coupling to Carbon Electrodes 652
8.4.5 Biotinylated DNA for Complex Formation with Avidin or Streptavidin 653
8.4.6 Polymers for Attachments of Probe Molecules 653
8.4.7 Simple Adsorption to Carbon Surfaces 654
8.5 Biosensor Device Fabrication Methods 654
8.5.1 Fabrication Nanowire-Based Biosensors 655
8.5.2 Fabrication of Microelectrochemical Biosensors 656
8.6 Micro-fluidic Channels 657
8.7 Biosensor Packaging 658
9 Characterization of Functionalized Biosensor Structures 659
10 Future Trends and Summary 660
References 661
Molecular Dynamics Applications in Packaging 664
1 Molecular Dynamics Procedure 665
2 Structures and Properties of Epoxy 668
3 Moisture Diffusion 672
4 Interconnection Alloys 676
5 Modification of Interface 679
6 Thermal Conductivity 681
7 Applications of Carbon Nanotubes 686
8 Summary 688
References 689
Nanoscale Deformation and Strain Analysis by AFM/DIC Technique 694
1 Introduction 694
2 Atomic Force Microscope (AFM) 697
3 AFM Scanner Imperfections 700
4 Reconstruction of AFM Images 704
5 Verification and Buckling Test 707
6 AFMDIC Experiments 711
7 Conclusions 716
References 717
Nano-Scale and Atomistic-Scale Modeling of Advanced Materials 718
1 Modeling of Carbon Nanotube Composites for Vibration Damping 719
2 Nanotube Composite Modeling 721
2.1 Modeling Platform and Assumptions 721
2.2 Finite Element Model 722
2.3 Simulation Results 726
2.4 Parametric Study on CNT Composites 731
3 Modeling of Nano-scale Single Crystal Silicon with Atomistic Continuum Mechanics 738
4 Numerical Simulation Strategy of Atomic and Nano-structures 740
4.1 Ab Initio Method 740
4.2 Monte Carlo Simulation 741
4.3 Molecular Mechanics 741
4.4 Molecule Dynamics 741
4.5 Atomistic 0 Continuum Mechanics 744
5 Concept of Atomistic Continuum Mechanics 744
6 Interatomic Potential Energy for Silicon 747
7 Methodology of Atomistic Continuum Mechanics 748
8 AtomisticContinuum Mechanics Models 749
9 Results and Discussion 750
9.1 Young's Modulus Estimation 750
9.2 Effect of Prescribed Displacement (Strain) on the Tensile Response 752
10 Summary and Conclusions 753
10.1 Modeling of Carbon Nanotube Composites for Vibration Damping 753
10.2 Atomistic--Continuum Mechanics Models 754
References 754
Index 758

Erscheint lt. Verlag 23.12.2009
Zusatzinfo XI, 761 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte biosensing • Biosensor • Biotechnology • Carbon Nanotubes • Design • Electronics • Nanomaterial • nanotechnology • Nanotube • Optics
ISBN-10 1-4419-0040-3 / 1441900403
ISBN-13 978-1-4419-0040-1 / 9781441900401
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 31,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich