Nanoscale Photonics and Optoelectronics (eBook)
XI, 231 Seiten
Springer New York (Verlag)
978-1-4419-7587-4 (ISBN)
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
Preface 6
Contents 8
Contributors 9
1 Spontaneous Emission Control in a Plasmonic Structure 12
1 Introduction 12
2 Purcell Enhancement Effect in a Uniform and Periodically Patterned Metal Surface 14
2.1 Quantization of Plasmonic Field 14
2.2 Quantum Electrodynamics of the Exciton Lying in the Vicinity of a Uniform Metal Surface 15
2.3 Purcell Effect for the Exciton in a Periodically Patterned Structure and Its Relation to Purcell Effect in a Cavity 19
2.4 Experimental Study of Purcell Enhancement Effect of the Exciton Lying in a Metal--Insulator--Metal Heterostructure 22
2.4.1 Sample Preparation 23
2.4.2 Photoluminescence Measurement 24
2.4.3 Time-Resolved (Decay-Time) Measurement 25
3 Spontaneous Emission Modification in a Surface Plasmon Defect Cavity 27
3.1 Spontaneous Emission Control in an SPP Defect Cavity 27
3.2 Surface Plasmon Grating as a Cavity 32
4 Conclusions 35
References 35
2 Surface Plasmon Enhanced Solid-State Light-Emitting Devices 38
1 Introduction 38
2 Background of Solid-State Light-Emitting Devices 41
3 Surface Plasmon Enhanced Light Emission 42
4 Surface Plasmon Coupling Mechanism 44
5 Improvements of IQEs and Emission Rates 47
6 Applications for Organic Light-Emitting Materials 50
7 Applications for CdSe-Based Quantum Dots 51
8 Applications for Silicon-Based Nanocrystals 53
9 Conclusions 54
References 55
3 Polariton Devices Based on Wide Bandgap Semiconductor Microcavities 58
1 Introduction 58
1.1 Distributed Bragg Reflectors 59
1.2 Cavity Polaritons 60
1.3 Polariton Lasing 62
2 Experimental Studies on Wide Bandgap Semiconductor Microcavities 65
2.1 GaN-Based Microcavities 65
2.2 ZnO-Based Microcavities 68
3 Conclusions 72
References 73
4 Search for Negative Refraction in the Visible Region of Light by Fluorescent Microscopy of Quantum Dots Infiltrated into Regular and Inverse Synthetic Opals 76
1 Experimental Details 77
References 86
5 Self-Assembled Guanosine-Based Nanoscale Molecular Photonic Devices 88
1 Introduction 88
2 Photonic Crystals for the UltravioletVisible Region 90
2.1 Material System for UV--Visible Photonic Crystals 92
2.2 GaN-Based Photonic Crystals 93
2.3 Diamond-Based Photonic Crystals 94
3 Self-assembled Guanine-Based Oligonucleotide Molecules 94
4 Refractive Index Measurement of SAGC by Ellipsometer 98
5 Modeling of Photonic Crystal 100
5.1 Design of Photonic Crystal with Software MPB 100
5.2 Photonic Crystal Slab with 101
5.3 Photonic Crystal Slab with 103
5.4 Photonic Crystal Slab with 104
5.5 Verification of the Photonic Crystal Designs by EMPLab TM 105
6 Discussion 105
References 107
6 Carbon Nanotubes for Optical Power Limiting Applications 111
1 Introduction 111
2 Mechanisms of Optical Power Limiting 114
2.1 Nonlinear Absorption 114
2.1.1 Reverse Saturable Absorption (RSA) 114
2.1.2 Multiphoton Absorption (MPA) 115
2.2 Nonlinear Refraction 116
2.3 Induced Scattering 118
2.4 Photo-refraction 118
3 Optical Power Limiting (OPL) Chromophores 119
3.1 Organics and Organometallics 119
3.2 Multiphoton Absorbers 120
3.3 Reverse Saturable Absorbers 120
3.4 Azo Dyes 121
4 Carbon-Based Materials for Optical Power Limiting 122
4.1 Fullerene and Carbon Black Suspension (CBS) 122
4.2 Carbon Nanotubes (CNTs) 122
4.2.1 Solubilized and Suspended Carbon Nanotubes 125
4.2.2 Combination of CNTs and Other OPL Components 128
5 Summary and Future Outlook 133
References 133
7 Field Emission Properties of ZnO, ZnS, and GaN Nanostructures 140
1 Introduction 140
2 ZnO Nanostructures 141
3 Field Emission Properties 143
4 ZnS Nanostructures 152
5 GaN Nanorods 154
References 160
8 Growth, Optical, and Transport Properties of Self-Assembled InAs/InP Nanostructures 166
1 Introduction 167
2 Growth of InAs/InP Nanostructures 169
2.1 P--As Exchange Process 169
2.2 Role of Vicinal Substrates 171
2.3 Influence of Growth Parameters on InAs Nanostructures 174
2.4 Postdeposition Modifications of InAs Nanostructures 175
2.5 Growth of InAs/InP Quantum Dots 176
2.6 As--P Exchange Process During Capping 176
2.7 Double-Cap Technique of Growth of InAs/InP Quantum Dots 177
3 Optical Properties of InAs/InP Nanostructures 179
3.1 Photoluminescence and Absorbance of InAs/InP Quantum Dot Samples 179
3.2 Simulation of the InAs/InP Quantum Dots Spectra 182
3.3 Temperature Effects in Photoluminescence and Transmission of the InAs/InP Quantum Dot Samples 185
3.4 Photoluminescence and Absorbance in InAs/InP(001) Quantum Well and Quantum Wire Systems 188
3.5 Thermally Induced Change of Dimensionality in Coupled InAs/InP Quantum Wire Nanostructures 195
3.6 Polarization-Dependent Transmittance and Photoluminescence of InAs/InP Nanostructures 198
4 Transport in Coupled InAs/InP Nanostructures 202
4.1 The Temperature-Dependent Magneto-Transport Experiments 202
4.2 Controlled Transport Anisotropy and Interface Roughness Scattering 209
4.3 Shubnikov-de-Haas Oscillations and Quantum Hall Regime 212
4.4 Weak Localization in Coupled InAs/InP Quantum Wire Nanostructures 215
5 Application of InAs/InP Nanostructures 220
6 Summary 221
References 223
Index 228
Erscheint lt. Verlag | 16.11.2010 |
---|---|
Reihe/Serie | Lecture Notes in Nanoscale Science and Technology | Lecture Notes in Nanoscale Science and Technology |
Zusatzinfo | XI, 231 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | Biophoton • Carbon Nanotubes • Electronics • LED • Nanophotonics • Nanotube • Optics • optoelectronics • Photonics • quantum dot |
ISBN-10 | 1-4419-7587-X / 144197587X |
ISBN-13 | 978-1-4419-7587-4 / 9781441975874 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich